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Abstract. In this paper we answer the question, whether any Delone set3 ⊂ Rn, invariant
under quasiaddition of Berman and Moody, can be identified with a cut and project quasicrystal.
For any such set3, we find an acceptance window�, which is bounded but has only convex
interior. The cut and project quasicrystal6(�) is then identified with an affine image of3.
Constructive methods used in the paper, allow one, in principle, to put bounds on� from a
given fragment of a Delone set.

1. Introduction

This paper studies properties of aperiodic deterministic point sets with the Delone (or
Delaunay) property, called quasicrystalline sets or simply quasicrystals inRn. The sets
6(�) considered here are of the ‘cut and project’ type with bounded convex ‘acceptance
window’ �. Relative to a suitable basis ofRn, the coordinates of their points are in the
ring of integersZ[τ ] of the fieldQ[τ ], whereQ[τ ] is the algebraic extension of rational
numbers by the golden meanτ = 1

2(1+
√

5).
In analogy with conventional addition on crystalline point sets, one searched for a

binary operation under which a certain class of aperiodic sets would be invariant. Such
an operation, called quasiaddition or equivalentlyτ -inflation, was introduced by Berman
and Moody [2]. They have shown that cut and project quasicrystals with bounded convex
acceptance windows are invariant under this operation. Until then there was no analogue
of the ordinary addition of lattice points on quasicrystals.

The boundedness and convexity of� assure respectively the Delone property andτ -
inflation invariance of6(�) [9]. The purpose of this paper is to investigate the opposite
implication: when a Delone set closed under quasiaddition can be identified with a cut and
project quasicrystal? In the main theorem (theorem 2.4) of this paper, we find, for each
such set3 ⊂ Rn, an acceptance window�, which is bounded with convex interior. It is
the boundary of� that complicates an exhaustive answer. The cut and project quasicrystal
6(�) is then an affine image of3.

This paper can be considered as a direct answer to the question asked in [4, (question (iii)
p 149)]. It was natural to anticipate the main part of our result, namely that concerning
boundedness and convexity of the interior of the corresponding acceptance window.
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Nevertheless, any conclusion is reliable only after it has been proven. Moreover our
problem, the opposite implication to that of Berman and Moody which we study here,
is far from being just a scientific curiosity. On it hinges a way in which one can deduce
information about the size and shape of the acceptance window when a fragment (i.e. finite
size) quasicrystal is given, for example by an experiment. Naturally the acceptance window
cannot be determided precisely, only bounds of its size can be found [7].

Cut and project quasicrystals can be defined for other algebraic irrationalities than
τ [3, 8], together with the corresponding quasiaddition [1].

By definition (2), the cut and project quasicrystals are subsets of aZ[τ ]-lattice in Rn
determined by their acceptance window. Therefore our first task is to find a mapping of
an arbitrary given Deloneτ -inflation invariant set inRn into aZ[τ ]-lattice in a way, which
would preserve the Delone property and theτ -inflation invariance. Then the second task is
to determine an acceptance window which would allow one to identify the mapped set as
the corresponding quasicrystal.

Since every cut and project quasicrystal with convex� is τ -inflation invariant, one
may expect the opposite implication to hold as well. It turns out that not every Delone
τ -inflation invariant set is transformable into a cut and project quasicrystal with convex�.
Instead, the implication leads to� with convex interior only. Its boundary is subject to
some additional conditions. Our definition of ‘quasiconvexity’ includes all the requirements
one has to impose on�.

The main theorem is stated in section 2. The rest of the paper essentially contains its
proof. However, some parts of the demonstration are of independent interest. The proof
of the theorem in one dimension is found in section 3. It is frequently called for in the
general case. In section 4 we have brought together some auxiliary statements which were
indispensable for the proof. The theorem is then proven in section 5. The quasiconvexity
notion is introduced in definition 5.4. It then allows one to find the necessary and sufficient
condition for a cut and project quasicrystal to be closed underτ -inflation. The last section
consists of an example.

2. Definitions and the main theorem

First we introduce notation and definitions which are needed to formulate the theorem
summarizing the main result of the paper, and we also recall some properties of defined
objects which are subsequently used. Let us single out the Delone property of a point set,
and the operations ofτ - and τ ′-inflations, whereτ = 1

2(1+
√

5) and τ ′ = 1
2(1−

√
5) are

the solutions of the algebraic equationx2 = x + 1.
In Q[τ ] = {s + tτ | s, t ∈ Q}, the extension of the rational numbers byτ , there is an

automorphism′:Q[τ ] → Q[τ ] given by τ → τ ′. The ringZ[τ ] of integers ofQ[τ ] is the
set

Z[τ ] = {a + bτ | a, b ∈ Z}.
Let us recall the following aboutZ[τ ].
• It is dense in the set of all real numbersR.
• It is a ring of principal ideals, i.e. all ideals inZ[τ ] are of the formξZ[τ ] for some

ξ ∈ Z[τ ]. All sets of this form forξ 6= 0 are dense inR.
• In particular,Z[τ ] is a unique factorization domain, hence the greatest common divisor

is well defined up to multiplication by a divisor of 1. Ifd = gcd{F } is the greatest common
divisor of a setF ⊂ Z[τ ], thend ′ is the greatest common divisor of the setF ′ of conjugated
points to points ofF .
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• The group of units ofZ[τ ] consists of{±τ k | k ∈ Z}. (An elementy ∈ Z[τ ] is a unit
iff yy ′ = ±1.) In a ringR of principal ideals the following statement holds. Foru, v ∈ R,
gcd{u, v} = 1, the equationux + vy = 1 has a solution inR.

An n-dimensionalZ[τ ]-lattice M ⊂ Rn is a freeZ[τ ]-module of the rankn, M =∑
i Z[τ ]αi , with αi a basis ofRn. We consider theZ[τ ]-lattices for which the standard scalar

product takes values inQ[τ ]. Let us recall some facts following from general properties
of modules. Two bases of aZ[τ ]-moduleM are related by a matrixA of determinant
detA = ±τ k for somek ∈ Z. A setL ⊂ M is a submodule ofM, if it is a Z[τ ]-module
on itself. If L is a submodule of a moduleM, spanning the sameRn, then there exist bases
f1, . . . , fn and e1, . . . , en of L andM respectively, such thatfi = aiei , whereai ∈ Z[τ ],
i = 1, . . . , n. Let S ⊂ Rn. We denote the set

[S]τ =
{
u1+

m∑
i=1

ξi(ui − u1)

∣∣∣∣ξi ∈ Z[τ ], ui ∈ S
}
. (1)

Clearly, this definition does not depend on the choice ofu1 in S. In the case that 0∈ S,
the set [S]τ coincides with theZ[τ ]-module generated by elements ofS.

Let ∗ be a mapping∗ : M → Rn. It is called the ‘star map’ if it is semilinear
with respect to the automorphism′, i.e. for anyx, y ∈ M, and anyr ∈ Z[τ ], one has
(x + ry)∗ = x∗ + r ′y∗, andM∗ spansRn over real numbers. On anyZ[τ ]-lattice M, one
can define a star map by puttingα∗i = αi for all basis vectors.

Note thatM∗ is also aZ[τ ]-lattice. If αi is the basis ofM, thanα∗i is the basis ofM∗.
Having anS ⊂ M, then

([S]τ )∗ = [S∗]τ .

In general,M∗ 6= M, but it may happen thatM andM∗ coincide even ifα∗i 6= αi .
The point sets considered in this article are required to be Delone sets or, equivalently,

to have the Delone property.

Definition 2.1.A set3 ⊂ Rn is Deloneif there existr1, r2 > 0 such that:
(i) 3 is uniformly discrete: (∀x ∈ 3)(B(x, r1) ∩3 = {x}),
(ii) 3 is relatively dense: (∀ x ∈ Rn)(B(x, r2) ∩3 6= ∅),

whereB(x, r) ⊂ Rn is then-dimensional ball of the radiusr, centred atx ∈ Rn.
Definition 2.2.Let M be aZ[τ ]-lattice in Rn and� ⊂ Rn. Let 6(�) be the set of points

6(�) = {x ∈ M|x∗ ∈ �}. (2)

For � bounded with nonempty interior the set6(�) is called a quasicrystal.� is called
an acceptance window for6(�).

According to [9], the boundedness of�, together with the fact that the interior�◦ is
nonempty, assure the Delone property of6(�). For � bounded, (2) is the usual way to
define a quasicrystal [10, 4] of cut and project type. Note that the stage for the quasicrystal
is theZ[τ ]-lattice M. Its star map image is the set� ∩M∗. In the one-dimensional case
one considersM = Z[τ ], and the star map reduces tox∗ = x ′, for x ∈ Z[τ ]. In this case
(x ′)′ = x and (Z[τ ])′ = Z[τ ]. An example of a one-dimensional quasicrystal is found
in (6).

Next recall the operatioǹ onRn, called eitherquasiadditionor τ -inflation [2], and let
us simultaneously introduce the analogous operationτ ′-inflation denoteda,

x ` y := τ 2x − τy (3)

x a y := (τ ′)2x − τ ′y = x

τ 2
+ y
τ
. (4)
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y x yx

y xyx

Figure 1. Geometrical meaning of definitions (3) and (4) ofτ - andτ ′-inflations.

Note that theτ ′-inflation is a convex linear combination ofx and y. Indeed, one has
0< τ−1 < 1 and for any power ofτ , the relationτ j+2 = τ j+1+ τ j is valid.

Relation (3) is not a unique way to define the quasiaddition. There is an infinite series
of similar operation one introduces in its place. For fixedx an anyy, we have from (3)

x ` y = x − τ(y − x). (5)

The geometric content of (5) is visible in figure 1. It is an inflation of the distance|y − x|
at the pointx by the factor−τ . One could consider other scaling factors provided they are
in Z[τ ] and the operation analogous to (4) is also convex. All such scaling factors form a
one-dimensional quasicrystal

6 ([0, 1]) := {x ∈ Z[τ ] | 06 x′ 6 1}. (6)

In [5] it was shown that6(�) with convex� are s-inflation invariant fors ∈ 6([0, 1]).
Therefore this study could be carried out using ans-inflation with s ∈ 6 ([0, 1]) instead
of only s = −τ . Subsequently we only consider the(−τ)-inflation, calling it traditionally
‘τ -inflation’. Note that−τ is the lowest element of6 ([0, 1]) in absolute value, providing
a nontrivial scaling. It appears unlikely that for generals ∈ 6([0, 1]), one could obtain
similar results as those presented in this paper.

Let us introduce theτ - andτ ′-inflation closures,A` andAa, for a setA ⊂ Rn, as the
minimal sets invariant underτ - andτ ′-inflations respectively, containingA.

Subsequently, when working with elements ofM, it is often advantageous to transfer
the consideration to theM∗-side in order to be confined to a finite region. The one-to-one
correspondence between the two can be written as

w ∈ {u, v}` ⇐⇒ w∗ ∈ {u∗, v∗}a ∀u, v ∈ M. (7)

Let us point out some properties ofτ -inflation [2], which are used below. Similar
properties involvingτ ′ are obtained replacing̀ by a. For anyx, y ∈ Rn:

(i) x ` x = x,
(ii) x ` y = y ` (y ` x),
(iii) for any affine mappingφ : Rn → Rn, one hasφ(x ` y) = φ(x) ` φ(y). In

particular, for anyu ∈ Rn, (x + u) ` (y + u) = (x ` y)+ u.
Later, while studying one-dimensional sets, we find useful the following lemma. It

implies that for any setS ⊂ Z[τ ] of generators, the inflation closureS` (or Sa respectively)
is contained in the ideal gcd{S}Z[τ ]. In such a case, if gcd{S} 6= 1, theτ ′-inflation does not
generate all points ofZ[τ ] contained in some acceptance window, thereforeS` is not a cut
and project set. The identification with a one-dimensional quasicrystal requires an affine
mappingφ, such that gcd{φ(S)} = 1.

Lemma 2.3.For u, v ∈ Z[τ ] and anyx ∈ {u, v}`, we have gcd{x, u} = gcd{u, v}.

Proof. Clearly, it suffices to show that for anyu, v ∈ Z[τ ], gcd{u, v} = gcd{u ` v, u}. Since
the factorization of a numberx ∈ Z[τ ] into primes inZ[τ ] is unique up to some divisor of
1, the greatest common divisor does not change, if we multiply the argument by any divisor
of unity τ k, with k ∈ Z, gcd{u, v} = gcd{τ ku, v}. Clearly, gcd{x, y} = gcd{x − y, y}.
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Therefore gcd{u ` v, u} = gcd{τ 2u − τv, u} = gcd{τ 2u − τv, τ 2u} = gcd{τv, τ 2u} =
gcd{v, u}. The statement of the lemma follows easily. �

The aim of this paper is to identify anyτ -inflation invariant Delone set3 in Rn, with
a cut and project quasicrystal. The problem has several aspects.

First, the stage for a cut and project quasicrystal is aZ[τ ]-latticeM, which is equipped
with a star map∗ . Therefore our first task is to embed3 into anM. However, as we have
seen from lemma 2.3 for the one-dimensional case, not all affine mappingsφ, φ(3) ⊂ M,
are suitable. In general, we require that [φ(3)]τ = M.

Having found an embeddingφ of 3 into a suitableZ[τ ]-lattice, one can check the star
map image ofφ(3), in correspondence with the cut and project definition. The desired
acceptance window is found as convex hull〈φ∗(3)〉.

The steps recalled above are rather natural, however, they need to be justified. First
of all, is it possible to find a suitable embedding of3 into a Z[τ ]-lattice? The answer is
yes, for3, which is τ -inflation invariant and Delone. When considering the acceptance
window, do all the points of theZ[τ ]-lattice contained in〈φ∗(3)〉, correspond to points of
3, or are there some additional ones? It turns out that this is true for the interior of the
window only. The question of the boundary should be dealt with in more detail.

The main result of this paper is formulated as the following theorem.

Theorem 2.4.Let 3 ⊂ Rn, n > 1, be a Delone set closed underτ -inflation. There exists
an affine mappingφ:Rn→ Rn, aZ[τ ]-latticeM =∑n

i=1Z[τ ]αi equipped with a star map,
and a bounded set� ⊂ R, with the convex interior�◦, such that

φ(3) = 6(�).
The convexity of the interior�◦ of the acceptance window describe� partially. A

necessary and sufficient condition on� to have6(�) τ -inflation invariant, is formulated
using the notion of quasiconvexity (cf definition 5.4).

The subsequent parts of this paper contain the proof, comments and examples. Some
of the auxiliary statements are of interest on their own. Particularly instructive is the one-
dimensional case.

3. One-dimensional sets

In this section we demonstrate in full the one-dimensional special case of the main
theorem as theorem 3.1. Most of the auxiliary steps are indispensable during the proof
of the multidimensional case. Some properties of higher-dimensional quasicrystals, such as
inflation symmetries [5], minimal distances [6], etc are in fact one-dimensional problems.

The quasiconvexity of�, in theorem 3.1, is replaced by the simple assertion that� is
convex, due to the fact that its boundary is of dimension 0.

Theorem 3.1.Let 3 ⊂ R be a Delone set closed underτ -inflation. There exists an affine
mappingφ : R→ R and a nondegenerated bounded interval� ⊂ R such that

φ(3) = 6(�).
The first step is to map3 ⊂ R into Z[τ ]. In fact not all mappings intoZ[τ ] are suitable

for subsequent identification of3 with the quasicrystal.
For a set3 ⊂ Z[τ ], containing 0 and closed underτ -inflation, lemma 2.3 implies that

3 is contained in gcd{3}Z[τ ], which is an ideal in the ringZ[τ ]. Consequently, for any
such set3 there exists an affine mappingψ (multiplication by (gcd{3}−1), which makes
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the inclusionψ(3) ⊂ ξZ[τ ] to imply that ξ is a divisor of unity, i.e.ξZ[τ ] = Z[τ ]. After
such an embedding intoZ[τ ], 3 is a cut and project quasicrystal with a convex acceptance
window, as shown in the following lemmas.

Lemma 3.2.Let 3 ⊂ R be a Delone set closed underτ -inflation. Then there exist an affine
mappingφ:R→ R such thatφ(3) ⊂ Z[τ ] and 0, 1∈ φ(3).

Proof. Take anyb ∈ 3. Since3 is Delone, the greatesta ∈ 3 smaller thanb, and the
smallestc ∈ 3 greater thanb, are well determined. Thus we consider pointsa < b < c

adjacent in3. In the first step we show that for anyb ∈ 3 the ratio of length of the line
segments bounded bya, b andc can only take certain values. Namely,

b − a
c − b = τ, 1, or

1

τ
. (8)

Since theτ -inflation invariance is preserved under an affine mapping, without loss of
generality we assume thata = −1, b = 0 andc > 1. If c = 1 or c = τ , then (8) is fulfilled.
Suppose thatτ 6= c > 1. Clearly, 0< c < τ . Indeed, ifc > τ , then 0` (−1) = τ < c,
which is the contradiction with the assumption that 0 andc are adjacent.

Since bothc andτ belong to3, alsou ≡ c ` τ = τ2c−τ 2 = τ 2(c−1) ∈ 3. However,
0< u < c, which is again the contradiction with the fact that 0 andc are adjacent in3.

For arbitrary pointb and its left neighboura < b we now putφ(a) = 0, φ(b) = 1. The
affine mapping is now well determined. Sinceφ(a), φ(b) ∈ Z[τ ] and all distances between
adjacent points of3 in this scale are of the formτ k, k ∈ Z, we haveφ(3) ⊂ Z[τ ]. �

Since 0, 1∈ φ(3) ⊂ Z[τ ], we have gcd{φ(3)} = 1. In order to identifyφ(3) with a
cut and project quasicrystal, we find its acceptance interval as the convex hull of the star
map imageφ∗(3) = φ′(3) of φ(3). Then we have to show that the only points fromZ[τ ]
in the convex hull are the elements ofφ′(3).

Let us introduce theτ -expansion, an important tool used several times later (lemma 3.3,
proof of theorem 3.1). Aτ -expansion[11] of a real numberx > 0 is an infinite sequence
(xi)k>i>∞ of coefficients taking only two values 0 and 1, so that one has the equality

x =
k∑

i=−∞
xiτ

i xi = 0 or 1. (9)

The identityτ j + τ j+1 = τ j+2, j ∈ Z, implies thatxixi−1 = 0, k > i ∈ Z. For negative
real numbers we putxi = −|x|i , negatives ofτ -expansion coefficients for|x|.

If an expansion ends with infinitely many zeros, it is said to befinite, and the zeros at
the end are omited. The set Fin(τ ) of all numbers with finiteτ -expansion coincides with
the ringZ[τ ]. In particular, theτ -expansion of anyx ∈ Z[τ ]∩ (0, 1) contains only negative
powers ofτ ,

x =
k∑
i=1

αiτ
−i =

k∑
i=1

αi
1

τ i
αi ∈ {0, 1};αiαi+1 = 0.

The following lemma is proven in [2]. Its demonstration below follows a different path,
and it is a crucial result for our purposes.

Lemma 3.3.

Z[τ ] ∩ [0, 1] = {0, 1}a.
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Proof. The inclusion ‘⊃’ is obvious; a combination of 0 and 1 with the coefficients(1/τ)2

and 1/τ is convex, therefore must lie between 0 and 1. As for the opposite inclusion ‘⊂’,
clearly both 0 and 1 are included in{0, 1}a. Indeed,x a x = x. For x ∈ (0, 1) we use its
τ -expansion. We will proceed recursively on the maximal power of1

τ
in the τ -expansion

of the numberx, denoted byk:
(1) k = 1:

x = 1

τ
= 0

τ 2
+ 1

τ
∈ {0, 1}a

(2) k = 2:

x = 1

τ 2
= 1

τ 2
+ 0

τ
∈ {0, 1}a

(3) k > 3:

x = α1

τ
+ α2

τ 2
+ · · · + αk

τ k

(a) either:

α1 = 0H⇒ x = 0

τ 2
+ 1

τ

(α2

τ
+ · · · + αk

τ k−1

)
∈ {0, 1}a

(b) or:

α1 = 1⇒ α2 = 0H⇒ x = 1

τ 2

(α3

τ
+ · · · + αk

τ k−2

)
+ 1

τ
∈ {0, 1}a.

�

The following remark, as a consequence of the lemma above, will be used in section 5.

Remark 3.4.A set3 ⊂ R, containing at least two elements and closed underτ -inflation,
which is not Delone, is dense inR.

The content of lemma 3.3 is readily extended to any interval [u, v] with u, v ∈ Z[τ ],
such thatv−u = τ k for some integerk. Using only properties of quasiaddition and the fact
that τ k is a divisor of unity in the ringZ[τ ], i.e. τ−kZ[τ ] = Z[τ ], we obtain the following
result.

Corollary 3.5. Let u, v ∈ Z[τ ], such thatv − u = τ k, for somek ∈ Z. Then

{u, v}a = [u, v] ∩ Z[τ ].

Unlike the previous case, if the differencev− u is not a unit inZ[τ ], not all the points
of Z[τ ] in the interval [u, v] can be generated byτ ′-inflation. However, using the operation
a we obtain all points in the interval of a certain ideal inZ[τ ]. Let us see an example. Let
3 = {0, 3}a. Suppose there exists a convex set (interval)P ⊂ R, such that3 = P ∩ Z[τ ].
Since3 = {0, 3}a, we have 0, 3∈ 3. Therefore the intervalP contains the interval [0, 3].
However, this means that for example 1∈ Z[τ ] ∩ [0, 3] should belong to3. Clearly, due
to lemma 2.3, we have 1= gcd{1, 3} 6= gcd{0, 3} = 3. Therefore 1/∈ 3. In general, the
description ofτ ′-inflation closure of a finite subset ofZ[τ ] can be written as follows.

Lemma 3.6.Let a0 < a1 < a2 < · · · < an, ai ∈ Z[τ ] for i = 0, . . . , n. Then

{a0, a1, . . . , an}a = [a0, an] ∩ (gcd{a1− a0, . . . , an − a0}Z[τ ] + a0).
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Note that a set3 ⊂ R, containing at least two elements and closed underτ ′-inflation,
is dense in〈3〉, the convex hull of3.

Occasionally a quasicrystal can be constructed as aτ -inflation closure of finite set of
seed points. Far from every set of seed points leads to a Delone set. The following assertion
can guide the choice of seeds.

Corollary 3.7. Let S be a finite subset ofR containing 0 and at least two additional points.
Then S` is Delone if and only if there exists anx ∈ S, such that all elements ofS are
Q[τ ]-multiples of x. In particular, leta, b, c ∈ R. The set{a, b, c}` is Delone if and only
if

c − b
b − a ∈ Q[τ ]. (10)

Otherwise{a, b, c}` is dense inR.

Proof. We prove the statement forS with three elements, the general assertion then follows
easily. Leta, b, c ∈ R. The implication (⇒) can be seen from lemma 3.2. For the
exists anx ∈ S, such that all elements ofS areQ[τ ]-multiples other implication, suppose
we have pointsa < b < c ∈ R satisfying (10). Since the action of a linear mapping
does not change the Delone property, we can consider a scale such thata = 0, b = 1.
Then necessarily 1< c ∈ Q[τ ], i.e. there existsp, q ∈ Z[τ ], gcd{p, q} = 1 such
that c = p

q
. By another rescaling we encounter the problem whether the set{0, q, p}`

is Delone or not. We use lemma 3.6 for the set of pointsS = {0, q ′, p′}. Since
gcd{q ′, p′} = 1, we have{0, q ′, p′}a = [min{0, q ′, p′},max{0, q ′, p′}] ∩ Z[τ ], which is
equivalent to{0, q, p}` = 6

(
[min{0, q ′, p′},max{0, q ′, p′}]), i.e. it is a cut and project

quasicrystal with bounded acceptance domain. It is shown in [9] that such a set is Delone.�

A multidimensional analogue of (10) is in corollary 5.2.
The following lemma shows that the Delone property of6(�) is lost when� is not

bounded.

Lemma 3.8.Let 6(�) = {x ∈ Z[τ ] | x ′ ∈ �} be a Delone set for an interval� ⊂ R. Then
� is non degenerated and bounded.

Proof. If � is degenerated, i.e.6(�) is either empty or contains only one element, then it
is not relatively dense and hence not Delone (cf definition 2.1). An unbounded connected
� implies that there exists anα ∈ R such that either(α,+∞), or (−∞, α) is subset of�.
Let (α,+∞) ⊂ �, the other case would be treated analogically. Without loss of generality,
α > 0. We want to obtain a contradiction with uniform discreteness of6(�). To prove its
negation,

(∀ε > 0)(∃x, y ∈ 6(�))(|y − x| < ε) (11)

we takek ∈ Z such thatτ k+2 > τk > max{α, 1
ετ
}. Since τ k+2 > τk > α, we have

τ k+2, τ k ∈ �, hence(τ k+2)′, (τ k)′ ∈ 6(�). Puttingx = (τ k)′ andy = (τ k+2)′, we find (11)
as

|(τ k+2)′ − (τ k)′| = 1

τ k
− 1

τ k+2
= 1

τ k+1
<

1

τ
τε = ε.

Therefore6 (�) is not uniformly discrete, hence not Delone. �
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Now we are in the position to prove the one-dimensional version (theorem 3.1) of the
main theorem.

Proof of theorem 3.1.Using lemma 3.2, we have a linear mappingφ : R→ R such that 0,
1 ∈ φ(3) ⊂ Z[τ ]. This means that gcd{φ(3)} = 1. Denote by� the convex hull of the
star map image ofφ(3), � := 〈φ∗(3)〉. First we prove that� ∩ Z[τ ] = φ∗(3).

The inclusion⊃ is obvious. Let us look at the opposite one:⊂. For anyx ∈ �∩Z[τ ]
we want to show thatx ∈ φ∗(3). Using corollary 3.5, we conclude that it suffices to find
an interval [c, d] ⊂ � of unit length, bounded by points fromφ∗(3). Clearly, [0, 1] ⊂ �.
Using lemma 3.3, we have([0, 1] ∩ Z[τ ]) ⊂ φ∗(3).

Suppose that� is bounded by some−∞ 6 u, v 6 +∞. The caseu = 0, v = 1 has
already been established. Suppose thatv > 1. Let x ∈ � ∩ Z[τ ], x > 1. Sinceφ∗(3)
is dense in�, there exists an elementw ∈ φ∗(3), such thatx < w < v. Sincew is an
element ofZ[τ ], the numberw − 1 6= 0 has the finiteτ -expansion,

w − 1= τ l +
l−2∑
i=−j

wiτ
i .

Clearly, w − τ l < 1 + τ l . Sinceφ∗(3) is dense in�, we can choose ad ∈ φ∗(3)
such that max{w − τ l, τ l} < d < 1 + τ l . Then necessarilyc := d − τ l belongs to
[0, 1] ∩ Z[τ ], hence also toφ∗(3). The length of the interval [c, d] is τ l , therefore
φ∗(3) ⊃ {c, d}a = [c, d] ∩ Z[τ ]. Now it suffices to take the interval [w − τ l, w], where
w−τ l ∈ [c, d], to obtainx ∈ ([0, w]∩Z[τ ]) ⊂ φ∗(3). Similarly we proceed for an element
x ∈ � ∩ Z[τ ], u < x < 0. Finally,φ∗(3) ⊃ � ∩ Z[τ ]. Thus we have

φ(3) = 6(�).
To prove the statement of theorem 3.1, it suffices to notice that, due to lemma 3.8,� is
bounded. �

4. Generators of inflation invariant sets

In this section we have collected several lemmas which subsequently facilitate the proof
of the main theorem 2.4. We describe theτ ′-inflation closureSa of a setS of generators
(‘seed points’). Lemma 4.1 and corollary 4.2 describe the case of the set generated from
two seed points,{x, y}a. In lemma 4.4 the set of generators is taken to be a basis of a
Z[τ ]-module. The result for an arbitrary set of generators is given in lemma 4.6.

Lemma 4.1.Let x, y ∈ M ⊂ Rn be two points in aZ[τ ]-module. Then

{x, y}a = {x + s(y − x) | s ∈ Z[τ ] ∩ [0, 1]}.
Corollary 4.2 singles out the case whenτ ′-inflation of two elementsx, y ∈ M generates

all points of theZ[τ ]-module on the line segment〈x, y〉.
Corollary 4.2. Let x, y be two points in aZ[τ ]-module M ⊂ Rn, with the basisαi ,
x = ∑ xiαi andy = ∑ yiαi , which, at least for onei ∈ {1, . . . , n}, satisfyyi − xi = τ k.
Then

{x, y}a = {x + s(y − x) | s ∈ [0, 1]} ∩M.
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Our ultimate aim is to describe the cut and project scheme of a Delone,τ -inflation
invariant set3 ⊂ Rn. The first task is to embed3 into a suitableZ[τ ]-moduleM. Only
then can we ask about its acceptance window. A hint for finding the window is a direct
consequence of lemma 4.1.

Let 3 ⊂ M ⊂ Rn be a Delone set, closed underτ -inflation. Then there exists a convex
set� ⊂ Rn,

� := 〈3∗〉 (12)

such that3∗ is dense in�. Here 〈3∗〉 denotes the convex hull of3∗. Moreover,3∗ is
dense on any line segment bounded by points of3∗.

In the case that〈3∗〉 ∩M∗ = 3∗, the set3 is a quasicrystal6(�), with the convex
acceptance window� given by (12). The following lemma helps us to decide the validity
of 〈3∗〉 ∩M∗ = 3∗.
Lemma 4.3.Let 3 ⊂ M be a Delone set, closed underτ -inflation, and� given by (12). If
there exists a non-empty open set�̃ ⊂ �, such that̃� ∩M∗ ⊆ 3∗. Then

�◦ ∩M∗ ⊆ 3∗

where�◦ is the interior of the set�.

Proof. We have to show that anyz ∈ �◦ ∩M∗ is contained in3∗.
First observe that for any pointx ∈ 3∗ and anyy ∈ �̃ ∩M∗, all pointsz of theZ[τ ]-

moduleM∗, on the line segment bounded byx andy, belong to3∗. Using corollary 4.2,
we can view the situation in one of the coordinates and thus face a one-dimensional problem
solved in the proof of theorem 3.1.

Now, let z ∈ �◦ ∩M∗. Choose arbitraryb ∈ �̃ ∩M∗ andc ∈ �◦, such thatz lies on
the line segment betweenb andc (see figure 2(a)). Since3∗ is dense in�, it is possible to
find a pointx ∈ 3∗ sufficiently closed toc, such that the straight line throughz, x intersects
�̃ nontrivially. Since�̃ is open, one can choose a pointy ∈ M∗ in this intersection. Then
z lies on the line segment betweeny and x (see figure 2(b)). Using the observation, we
find z ∈ 3∗. �

In lemma 4.4 we show that allZ[τ ]-module points inside a certain polytop are generated
by τ ′-inflation starting from its vertices.

Lemma 4.4.Let M ⊂ Rn be aZ[τ ]-module with a basisαi , i = 1, . . . , n. Then

{0, α1, . . . , αn}a = M ∩ 〈0, α1, . . . , αn〉.

Ω

z

b

c

Ω
Ω

x

b
y

z c

Ω

Figure 2. A symbolic representation of two subsequent steps of the proof of lemma 4.3.
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Proof. We show that all points of the moduleM of the polytope with vertices 0, α1, . . . , αn
(convex combinations of the vertices), can be generated byτ ′-inflation, using the vertices
as generators. We proceed recursively on the number of nonzero coefficients in the convex
combination.

Using lemma 4.1 and corollary 4.2, we obtain

{0, αi}a = (Z[τ ] ∩ [0, 1])αi = M ∩ 〈0, αi〉 (13)

where we denote using〈0, αi〉 the convex hull of vertices 0,αi , i .e. the line segment with
boundary points 0,αi . Similarly,

{αi, αj }a = (Z[τ ] ∩ [0, 1])(αj − αi)+ αi = M ∩ 〈αi, αj 〉. (14)

Now, let the pointz ∈ M be the convex combination ofk + 1 vertices of the polytope,
for some 2< k + 16 n+ 1. Without loss of generality suppose that

z = z0.0+
k∑
i=1

ziαi zi ∈ Z[τ ], zi > 0 i = 0, . . . , k
k∑
i=1

zi < 1.

First, let us consider a pointz with the property

z1 <
1

τ
and

k∑
i=2

zi <
1

τ 2
. (15)

Then

z = z1α1+
k∑
i=2

ziαi = 1

τ
(τz1α1)+ 1

τ 2

( k∑
i=2

τ 2ziαi

)
which is, due to induction hypothesis, aτ ′-inflation combination of two pointsτz1α1 ∈
{0, α1}a and

∑k
i=2 τ

2ziαi ∈ {0, α1, . . . , αk}a of the polytope. Thusz ∈ {0, α1, α2, . . . , αk}a.
It now suffices to realize that the region of pointsz, satisfying (15), defines an open

(with respect toRk) set �̃ ⊂ 〈0, α1, . . . , αn〉 =: �. Due to lemma 4.3, applied to the
Z[τ ]-latticeM(k) :=∑k

i=1Z[τ ]αi , we have

〈0, α1, . . . , αk〉◦ ∩M = 〈0, α1, . . . , αk〉◦ ∩M(k) ⊂ {0, α1, α2, . . . , αk}a,
where all interiors are meant with respect toRk.

Boundary points of〈0, α1, . . . , αk〉◦ ∩ M are in {0, α1, α2, . . . , αk}a, according to
induction hypothesis. �

For the following corollary realize that ifM is a Z[τ ]-lattice with basisαi , then
corresponding star map imageM∗ is also aZ[τ ]-lattice. Its basis isα∗i .

Corollary 4.5. LetM ⊂ Rn be aZ[τ ]-module with a basisαi , i = 1, . . . , n, equipped with a
star map. The set{0, α1, . . . , αn}` is a cut and project quasicrystal with acceptance window
〈0, α∗1, . . . , α∗n〉.

The following lemma is used in the proof of lemma 5.1 and implies the proposition 5.4.

Lemma 4.6.Let S ⊂ M. Then

[S]τ ∩ 〈S〉◦ ⊂ Sa.



4938 Z Masáková et al

Proof. Without loss of generality assume that 0∈ S. In this case

[S]τ =
{ m∑
i=1

ξiui

∣∣∣∣ ξi ∈ Z[τ ], ui ∈ S
}

coincides with theZ[τ ]-submodule ofM generated byS.
Suppose initially thatS is finite. We proceed recursively on the number of elements in

S. Let u ∈ M, [0, u]τ := {tu | t ∈ Z[τ ]}. Then using corollary 4.2,

[0, u]τ ∩ 〈0, u〉 := {tu | t ∈ Z[τ ] ∩ [0, 1]} = {0, u}a.
Suppose now, that for anyS ⊂ M, with less thank + 1 elements, the statement holds.

TakeS = {0, u1, . . . , uk}, whereui ∈ M. We show that

[0, u1, . . . , uk]
τ ∩ 〈0, u1, . . . , uk〉◦ ⊂ {0, u1, . . . , uk}a.

Consideru ∈ [0, u1, . . . , uk]τ ∩ 〈0, u1, . . . , uk〉◦. We can write

u =
k∑
i=1

βiui βi ∈ R, βi > 0
k∑
i1

βi < 1.

Assume that

βi ∈ Z[τ ] ∀i ∈ {1, . . . , k}. (16)

For linearly dependentui ’s, the assumption is not obvious. It is justified in the final part
of this proof. Given assumption (16) and using the same procedure as in the proof of
lemma 4.4, we consider first the pointsu =∑βiui satisfying

β1 <
1

τ
and

n∑
i=2

βi <
1

τ 2
.

Thenu is aτ ′-inflation combination of points which are, due to induction hypothesis, already
in {0, u1, . . . , uk}a. These points form an open set̃� for lemma 4.3, which gives us the
result.

It now suffices to show the statement also for infinite setsS. Let x ∈ [S]τ ∩〈S〉◦. There
exists a finite setP ⊂ S, such thatx ∈ [P ]τ ∩ 〈P 〉◦, which we have shown to be a subset
of {P }a ⊂ {S}a.

Let us now justify assumption (16). Sinceu ∈ [0, u1, . . . , uk]τ ∩ 〈0, u1, . . . , uk〉◦, we
can findδ1, . . . , δk ∈ Z[τ ], such that

u =
k∑
i=1

δiui (17)

andγ1, . . . , γk ∈ R, such that

u =
k∑
i=1

γiui with γi > 0
k∑
i=1

γi < 1. (18)

In the case of linearly independentu1, . . . , uk, the coefficientsδi andγi must coincide and
we can putβi := δi = γi .

Otherwise there are manyk-tuples(δ1, . . . , δk) and(γ1, . . . , γk) satisfying (17) and (18),
respectively. Without loss of generality, we assume thatu1, . . . , ul are linearly independent
for l < k, andl is the rank of{u1, . . . , uk}. Sinceul+1, . . . , uk are dependent onu1, . . . , ul ,
there exists coefficientsαr andαri , for r = l + 1, . . . , k, andi = 1, . . . , l, such that

αrur =
l∑
i=1

αri ui r = l + 1, . . . , k. (19)
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Clearly, the coefficientsαr andαri can be chosen fromZ[τ ].
We can add a zero to equation (17), given by sum of relations (19),

0=
k∑

r=l+1

[ l∑
i=1

αri ui − αrur
]

multiplied by any factorHr ∈ Z[τ ],

u =
l∑
i=1

(
δi +

k∑
r=l+1

Hrα
r
i

)
ui +

k∑
i=l+1

(δi −Hiαi)ui. (20)

Subtracting (18) from (20), one has

u− u = 0=
l∑
i=1

(
δi − γi +

k∑
r=l+1

Hrα
r
i

)
ui +

k∑
i=l+1

(δi − γi −Hiαi)ui. (21)

Using the free parameterHi ∈ Z[τ ], i = l+1, . . . , k, and the fact thatZ[τ ] is dense inR, it
is possible, for anyε > 0, to findHi ∈ Z[τ ] such that the coefficients ofui , i = l+1, . . . , k,
in (21) are close to zero,

|δi −Hiαi − γi | < ε.

From (21), one obtains

z :=
k∑

i=l+1

(γi − δi +Hiαi)ui =
l∑
i=1

(
δi − γi +

k∑
r=l+1

Hrα
r
i

)
ui

where‖z‖ < εkmax{‖ui‖ | i = 1, . . . , k}. Since the coordinate functional is continuous,
for givenω > 0, one findsε > 0 small enough, such that∣∣∣∣δi + k∑

r=l+1

Hrα
r
i − γi

∣∣∣∣ < ω i = 1, . . . , l (22)

|δi −Hiαi − γi | < ε i = l + 1, . . . , k. (23)

Now put

βi :=

 δi +
k∑

r=l+1

Hrα
r
i ∈ Z[τ ] i = 1, . . . , l

δi −Hiαi ∈ Z[τ ] i = l + 1, . . . , k.

One can chooseω andε in (22) and (23) small enough, such thatβi have the same properties
asγi in (18), i.e. satisfy (16). �

A consequence of the above lemma is formulated as corollary 4.7. It is a very important
step for the proof of the main theorem, namely for identification of the acceptance window
of the inflation closure of an arbitrary setS ⊂ M of generators.

Corollary 4.7. Let S be a subset of aZ[τ ]-lattice M, equipped with a star map, such that
[S]τ = M. Then

6(〈S∗〉◦) ⊂ S` ⊂ 6(〈S∗〉).
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The above corollary identifies the inflation closure of an arbitrary set of generators
with a cut and project set. If the assumption [S]τ = M is not valid, we consider as the
correspondingZ[τ ]-lattice the set [S]τ −a0, for somea0 ∈ S, where the star map is induced
from M.

There are two important facts to notice. First, corollary 4.7 does not deal with the
Delone property of the inflation closureS`. Therefore no statement about boundedness
of the acceptance window can be made. Therefore in general, the resulting set may not
be a quasicrystal. Secondly, we determine only the interior of the acceptance window.
In order to provide complete information about its boundary, we introduce the notion of
quasiconvexity (definition 5.4). The following section gives the answers for both of the
problems.

5. Proof of the main theorem

Herein the proof of theorem 2.4 is completed. However, before that several essential steps
have to be taken, some of them being of wider interest. Let us point some of them out.
Similarly as in the one-dimensional case, an arbitraryτ -inflation invariant Delone set in
Rn needs to be mapped into aZ[τ ]-lattice, in order to be identified with a quasicrystal
(lemma 5.1). A particularly useful for generating quasicrystals is a consequence of the
lemma, which is formulated as corollary 5.2 (compare with corollary 3.7). Lemma 5.3
states that the boundedness of� is not only a sufficient, but also a necessary condition for
a cut and project quasicrystal closed underτ -inflation, to be Delone. The quasiconvexity
defined at the end of the section, allows us to formulate the general necessary and sufficient
condition for6(�) to be closed under quasiaddition (proposition 5.5).

The mapping of an arbitrary Deloneτ -inflation invariant set into aZ[τ ]-lattice is
accomplished according to lemma 5.1.

Lemma 5.1.Let 3 ⊂ Rn be a Delone set closed underτ -inflation. There exists a basis
αi ∈ Rn, such that3 can be embedded using an affine mappingφ:Rn → Rn in the
Z[τ ]-latticeM :=∑n

i=1Z[τ ]αi , φ(3) ⊂ M, and 0,αi ∈ φ(3).
Note that the basis ofM belongs toφ(3), which implies thatφ(3) ⊂ M is not contained

in any proper submodule ofM.

Proof of lemma 5.1.Initially we find an affine embeddingφ:Rn → Rn of 3 into aZ[τ ]-
moduleL. Let βi for i = 1, . . . , n be a basis ofRn, such that(βi | βj ) ∈ Z[τ ] for all i, j .
Denote byL theZ[τ ]-module generated by the basisβi , L :=∑n

i=1Z[τ ]βi . Without loss
of generality suppose that 0∈ 3. Since3 is relatively dense, it spansRn and hence there
existsn+1 elements 0≡ x0, x1, . . . , xn ∈ 3, such thatx1, . . . , xn are linearly independent.
Let us distinguish the following possibilities.

(1) All coordinates of any pointy ∈ 3, relative to the basisxi , belong toZ[τ ]. Then
put φ(xi) = βi for i = 1, . . . , n.

(2) For anyj = 1, . . . , n, the set ofj th coordinates of all points of3, relative to
the basisxi , are elements of1

pj
Z[τ ], for somepj ∈ Z[τ ]. Then putφ(xi) = piβi for

i = 1, . . . , n.
(3) If (1) and (2) are not fulfilled, say for first coordinate, we show the contradiction

with the assumption that3 is Delone. First, we find a sequence of points
n∑
i=1

u
(m)
i xi = u(m) ∈ 3 such thatu(m)1

m→∞−→ 0. (24)
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Without loss of generality,u(m)1 are mutually distinct. There are two possibilities.
(a) There exists a pointy ∈ 3 such that one of its coordinates, say the first one, in

the basisx1, . . . , xn is not an element ofQ[τ ]. Now due to corollary 3.7, the set of first
coordinates of{x0, x1, y}` is dense everywhere inR, thus 0 is its accumulation point. Since
3 is closed under quasiaddition, there exists a sequence of points satisfying (24).

(b) There exists an infinite sequence ofp(m) ∈ Z[τ ] and a sequence of pointsy(m) ∈ 3
such that for the first coordinate in the basisx1, . . . , xn, there isy(m)1 ∈ 1

p(m)
Z[τ ] and

y
(m)

1 /∈ 1
p(k)
Z[τ ] for k < m. The τ -inflation closure{y(m)1 | m ∈ N}` is a set closed under

quasiaddition which cannot be embedded intoZ[τ ], therefore according to lemma 3.2, is
not Delone. Hence, due to remark 3.4, the point 0 is its accumulation point and we can
construct the sequenceu(m) of (24).

Put nowφ(xi) = βi , for i = 2, . . . , n andβ∗i = βi . Let us denote

z(m) :=
n∑
i=2

u
(m)
i βi .

Since{0, β2, . . . , βn}` is a cut and project quasicrystal (remark 4.5) inRn−1 with bounded
acceptance window, it is Delone inRn−1 [9], i.e. relatively dense. There existsr > 0, such
that for anym ∈ N there exists an elementw(m) ∈ {0, β2, . . . , βn}` such that

‖τz(m) − w(m)‖ < r.

Take the sequence of pointsu(m) ` w(m). The points are mutually distinct, since their first
coordinates areτ 2u

(m)

1 . One has

‖u(m) ` w(m)‖ = τ‖τu(m) − w(m)‖ = τ‖τu(m)1 α1+ τz(m) − w(m)‖ < τ(‖α1‖ + r)
where we have used that‖u(m)1 ‖ < 1

τ
for m ∈ N sufficiently large. We have constructed an

infinite sequence of elements of3 in a bounded region, therefore3 cannot be uniformly
discrete, hence it is not Delone.

In (1) and (2) of this proof, we have constructed the affine mappingφ and aZ[τ ]-module
L such thatφ(3) ⊂ L. TakeM to be theZ[τ ]-submodule ofL generated byφ(3). M
has a basis, sayαi , i = 1, . . . , n. The star mapα∗i is well determined by the semilinearity
from β∗i = βi . The vectorsα∗i form a basis of theZ[τ ] moduleM∗. To show that a basis
of M is contained inφ(3), it suffices to show that its star map belongs toφ∗(3). Without
loss of generality, suppose that 0∈ 〈φ∗(3)〉◦. Otherwise we take a pointy∗0 ∈ 〈φ∗(3)〉◦
and redefineφ to ψ given byψ(x) = φ(x)− y0. Due to lemma 4.6 we obtain

M∗ ∩ 〈φ∗(3)〉◦ ⊂ φ∗(3). (25)

Clearly, since 0∈ 〈φ∗(3)〉◦, we can multiply the basisα∗i by a suitableτ k small enough,
such that the resulting vectors would belong to〈φ∗(3)〉◦ and retain the property of a basis.�

The following corollary generalizes corollary 3.7 to dimensions greater than one. It is
a consequence of the proof of lemma 5.1.

Corollary 5.2. Let S ⊂ Rn be a finite set containing the origin. Theτ -inflation closureS`

is a Delone set if and only if there exists linearly independent vectorsu1, . . . , un ∈ S, such
that for any pointx ∈ S, one has

x =
n∑
i=1

xiui xi ∈ Q[τ ].
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The following lemma is used in the proof of the main theorem. However, it is of an
independent interest. It restates the well known [9] implication that boundedness of� in a
cut and project scheme assures the Delone property of the resulting set, completing it into
a necessary and sufficient condition.

Lemma 5.3.Let � ⊂ Rn be a convex region. Then6(�) is Delone if and only if� is
bounded and it is not embedable into any(n− 1)-dimensional linear manifold.

Proof. We show only the implication not proven in [9], namely if� is convex and6(�)
a Delone set, then� is bounded and it cannot be embedded into a linear manifold inRn of
dimensionn− 1.

If � is embeddable into a linear manifold of dimensionk < n, so does the quasicrystal
set6(�). Therefore it is not relatively dense inRn and hence not Delone.

Suppose now that� is not embedable into a manifold of lower dimension and that
it is not bounded. To show that6(�) is not uniformly discrete, it is convenient to
use [6, theorem 5.7]. It says that the upper bound for the minimal distance between
quasicrystal points for6(�), with convex centrally symmetric acceptance window�, is
given by

ε(�) 6 4(2τ − 1)√
π

· n

√
0(n/2+ 1)| detα|| detα∗|

vol(�)
(26)

where0 is the gamma function. The larger is the volume of�, the smaller are the distances.
Minimal distance in a subset of6(�) is the upper bound for the minimal distances in6(�),
therefore it suffices to find a sequence of subsets of�, satisfying assumptions for (26) with
growing volume. Let us proceed in two steps.

First we show that any simplexT in Rn of volume v contains a centrally symmetric
convex subset of volume 2(1−n)n/2v. In T we first find a simplexS as the convex hull of a
vertexP of T , and the centres ofn edges ofT , which meet inP . Denote byC the centre
of the centrally symmetric convex subsetQ of the (n− 1)-dimensional face ofS opposite
to P , which is found by induction. The desired centrally symmetric convex subset ofT

of volume 21−n · 2(2−n)(n−1)/2v = 2(1−n)n/2v is obtained as the smallest centrally symmetric
(with centreC) convex set containing the faceQ and the pointP . The first step of induction
(two-dimensional case) is illustrated in figure 3.

Secondly we show that any convex unbounded set contains a simplex of volume larger
than arbitrarily chosen constant. Without loss of generality suppose that 0∈ �. Since
� spansRn, and contains zero, there exists linearly independentx1,. . . , xn ∈ �. The set

Figure 3. In any triangleT of volumev, one finds a convex centrally symmetric subset (grey
coloured) of volume1

2v. The notation corresponds to the proof of lemma 5.3.



Self-similar Delone sets and quasicrystals 4943

〈0, x1, . . . , xn〉 is a simplex. Letr > 0 be such that〈0, x1, . . . , xn〉 is contained in the ball
B(0, r), centred at origin of radiusr.

For a directionk ∈ Rn of unit norm, we denote the linear manifolds orthogonal with
respect tok, by

Hk,a := {x ∈ Rn | (x | k) = a}
and the maximal cross section parallel toHk,a by

sect(�, k) := sup{vol(� ∩Hk,a) | a ∈ R}.
The minimal among them is

q := inf{sect(�, k) | k ∈ Rn} > 0.

Since� is unbounded, for anyα > 0 there exists a pointx ∈ � such that‖x‖ > α+ r.
There is

sect(�, k) > q for k = x

‖x‖ .
Let a ∈ R be the argument for which vol(� ∩ Hk,a) = sect(�, k). The volume of the

simplexT , determined by the face� ∩Hk,a and by the pointx, satisfies

vol(T ) >
1

n
sect(�, k) · α > 1

n
qα.

For any positive constantδ there exists centrally symmetric convex subset�̃ of � such
that ε(�̃) < δ, therefore6(�) is not uniformly discrete, hence also not Delone. �

Due to the previous preparations, the proof of theorem 2.4 is straightforward.

Proof of theorem 2.4.Due to lemma 5.1, there exists a linear mappingφ and aZ[τ ]-
moduleM := ∑

Z[τ ]αi such that 0, αi ∈ φ(3) ⊂ M. We define the star map by
x = ∑n

i=1 xiαi → x∗ = ∑n
i=1 x

′
iαi . Since the origin and the vectors of the basis are

contained inφ(3) andα∗i = αi , we can use lemma 4.4 to obtainφ∗(3) ⊃ {0, α1, . . . , αn}a =
M∗∩〈0, α1, . . . , αn〉. There is〈0, α1, . . . , αn〉 ⊂ 〈φ∗(3)〉. According to lemma 4.3 we have
〈φ∗(3)〉◦ ∩M∗ ⊆ φ∗(3). Now denote� := 〈φ∗(3)〉◦ ∪ φ∗(3). Clearly,φ(3) = 6(�),
where�◦ is convex. Since� has a nonempty interior (�◦ ⊃ 〈0, α1, . . . , αn〉◦), it is not
embedable into a linear manifold of lower dimension. Therefore one can use lemma 5.3 to
conclude that� is bounded. �

In the proof of theorem 2.4 we find� as the union of the convex part〈φ∗(3)〉◦ with
a set of points inφ∗(3) found on the boundary of〈φ∗(3)〉. In general, the boundary of
〈φ∗(3)〉 may contain points ofM∗ \ φ∗(3). Precisely these points prevent the equality in
the following:

6
(〈φ∗(3)〉) 6= 6(�) = φ(3).

The fact that�◦ is convex, does not describe� completely. Therefore one needs more
than theorem 2.4 alone, to formulate a necessary and sufficient condition for6(�) to be
closed under quasiaddition. For that we introduce the notion of quasiconvexity.

Definition 5.4.Let M be aZ[τ ]-module inRn. A set� ⊂ Rn is quasiconvexiff for any
linear manifoldW ⊂ Rn of dimension 0< k 6 n, � satisfies

〈� ∩W 〉◦ ∩ [� ∩W ∩M∗]τ ⊂ �
where [�∩W ∩M∗]τ is defined by (1), and the interior in〈�∩W 〉◦ is meant with respect
to the manifoldW .
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The complete correspondence between cut and project andτ -inflation invariant sets is
given in the proposition below, which follows from lemma 4.6.

Proposition 5.5.LetM be aZ[τ ]-module inRn. The set6(�) is closed under quasiaddition
if and only if its acceptance window� is quasiconvex.

Finally, let us consider an example of a quasicrystal with quasiconvex acceptance
window in theM2 ⊂ R2, theZ[τ ]-span of the root system12 of the noncrystallographic
Coxeter groupH2. A basisαi , i = 1, 2, of such a module is often modelled by the fifth
roots of unity in the complex plane,

α1 = α∗1 = 1 α2 = e4iπ/5 α∗2 = e8iπ/5. (27)

Consider� ⊂ R2 to be the union of following three sets:{
(x, y) ∈ R2 | x = t cosφ, y = t sinφ, φ ∈

[
0,

2π

5

)
, 06 t < 2

}
{
(x, y) ∈ R2 | x = 2 cosφ, y = 2 sinφ, φ ∈

[
0,
π

5

]}
{
(x, y) ∈ R2 | x = t cos

2π

5
, y = t sin

2π

5
, t ∈ [0, 2) ∩ 2Z[τ ]

}
.

Clearly, this set has the convex interior (disc segment), however is not convex (the line
segment forming a part of boundary). Nevertheless,6(�) is closed underτ -inflation.

6. Example: Inflation closures of three points as quasicrystals

Let us apply the result of this paper to an example of a finitely generated set. Consider the
inflation closureS` of three points in the plane. Without loss of generality, one of them
can be taken to be the origin,S = {0, x1, x2}. The setS` is invariant under quasiaddition,
therefore according to the result of this paper it can be affinely mapped into a cut and
project quasicrystal. Whatever are the vectorsx1, x2, the resultingS` is unique, up to an
affine mapping.

Let us consider two 3-point sets in the complex plane for our example,

S1 =
{

0, 1, e
3π i
5

}
S2 =

{
0, 1, e

4π i
5

}
.

(28)

According to the main theorem of this paper (theorem 2.4), the inflation closures ofS1 and
S2 can be identified with cut and project quasicrystals.

The example was chosen in such a way that one can find the affine mapping for
both setsS`1 , S`2 simultaneously. The stage for our quasicrystals will be theZ[τ ]-lattice
M2 =

∑
i Z[τ ]αi , based on simple roots of the noncrystallographic Coxeter groupH2 as

the basisα1, α2. We determine the affine mappingφ : C→ M2, by setting

φ(0) = 0 φ(1) = α1 φ(e
4π i
5 ) = α2.

The most simple definition of a star map on aZ[τ ]-lattice, is to putα∗i = αi . Since we
are using a well known moduleM2, we shall consider the standard star map [4], which is
determined by

α∗1 = α1 α∗2 = −α1− τα2



Self-similar Delone sets and quasicrystals 4945

Figure 4. Fragments of quasicrystals (30). The parallelogram shapes of the fragments are
chosen in order to facilitate the identification of points on the two pictures according to the
mappingψ (29).

Figure 5. Acceptance windows of the quasicrystalsS`1 , S`2 from figure 4. The triangles are the
convex hulls〈S∗1〉, 〈S∗2〉, respectively.

(cf (27)). The latter maps the root system ofH2 onto itself, so thatα2 is also one of the
roots.

The embedding of setsS1, S2 into M2 is given by

φ(S1) = {0, α1, α1+ τα2}
φ(S2) = {0, α1, α2}.

The pairs of vectors{α1, α1+ τα2} and{α1, α2} are related by the matrix

ψ =
(

1 τ ′

0 −τ ′
)

(29)

with determinant detψ = −τ ′ = τ−1, therefore both pairs are bases of the sameZ[τ ]-
moduleM2.

Having embedded the setsS`i into aZ[τ ]-lattice, which is equipped by a star map, we
can identify the sets with cut and project quasicrystals, which means that we can find the
corresponding acceptance windows. Since both setsφ(Si) are formed by the origin and basis
vectors of theZ[τ ]-latticeM2, we can use corollary 4.5, to conclude that the corresponding
acceptance windows are given by the convex hulls ofφ(S∗1), φ(S

∗
2) respectively,

S`i = 6(〈S∗i 〉) i = 1, 2. (30)

The corresponding acceptance triangles are displayed on figure 5.
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