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Abstract. In this paper we answer the question, whether any Delone\setRR”, invariant
under quasiaddition of Berman and Moody, can be identified with a cut and project quasicrystal.
For any such set, we find an acceptance windo®, which is bounded but has only convex
interior. The cut and project quasicrystal2) is then identified with an affine image of.
Constructive methods used in the paper, allow one, in principle, to put bounds foom a

given fragment of a Delone set.

1. Introduction

This paper studies properties of aperiodic deterministic point sets with the Delone (or
Delaunay) property, called quasicrystalline sets or simply quasicrystdi'.inThe sets

2 (2) considered here are of the ‘cut and project’ type with bounded convex ‘acceptance
window’ . Relative to a suitable basis @&, the coordinates of their points are in the
ring of integersZ[z] of the field Q[t], where Q[z] is the algebraic extension of rational
numbers by the golden mean= (1 + v/5).

In analogy with conventional addition on crystalline point sets, one searched for a
binary operation under which a certain class of aperiodic sets would be invariant. Such
an operation, called quasiaddition or equivalenthnflation, was introduced by Berman
and Moody [2]. They have shown that cut and project quasicrystals with bounded convex
acceptance windows are invariant under this operation. Until then there was no analogue
of the ordinary addition of lattice points on quasicrystals.

The boundedness and convexity @fassure respectively the Delone property and
inflation invariance ofx(2) [9]. The purpose of this paper is to investigate the opposite
implication: when a Delone set closed under quasiaddition can be identified with a cut and
project quasicrystal? In the main theorem (theorem 2.4) of this paper, we find, for each
such setA c R”", an acceptance windo®, which is bounded with convex interior. It is
the boundary of2 that complicates an exhaustive answer. The cut and project quasicrystal
2 () is then an affine image ok.

This paper can be considered as a direct answer to the question asked in [4, (Question (iii)
p 149)]. It was natural to anticipate the main part of our result, namely that concerning
boundedness and convexity of the interior of the corresponding acceptance window.
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Nevertheless, any conclusion is reliable only after it has been proven. Moreover our
problem, the opposite implication to that of Berman and Moody which we study here,
is far from being just a scientific curiosity. On it hinges a way in which one can deduce
information about the size and shape of the acceptance window when a fragment (i.e. finite
size) quasicrystal is given, for example by an experiment. Naturally the acceptance window
cannot be determided precisely, only bounds of its size can be found [7].

Cut and project quasicrystals can be defined for other algebraic irrationalities than
7 [3, 8], together with the corresponding quasiaddition [1].

By definition (2), the cut and project quasicrystals are subsetsZifrglattice in R”
determined by their acceptance window. Therefore our first task is to find a mapping of
an arbitrary given Delone-inflation invariant set irR” into aZ[r]-lattice in a way, which
would preserve the Delone property and thanflation invariance. Then the second task is
to determine an acceptance window which would allow one to identify the mapped set as
the corresponding quasicrystal.

Since every cut and project quasicrystal with con¥exs t-inflation invariant, one
may expect the opposite implication to hold as well. It turns out that not every Delone
r-inflation invariant set is transformable into a cut and project quasicrystal with cavex
Instead, the implication leads t@ with convex interior only. Its boundary is subject to
some additional conditions. Our definition of ‘quasiconvexity’ includes all the requirements
one has to impose oft.

The main theorem is stated in section 2. The rest of the paper essentially contains its
proof. However, some parts of the demonstration are of independent interest. The proof
of the theorem in one dimension is found in section 3. It is frequently called for in the
general case. In section 4 we have brought together some auxiliary statements which were
indispensable for the proof. The theorem is then proven in section 5. The quasiconvexity
notion is introduced in definition 5.4. It then allows one to find the necessary and sufficient
condition for a cut and project quasicrystal to be closed undaflation. The last section
consists of an example.

2. Definitions and the main theorem

First we introduce notation and definitions which are needed to formulate the theorem
summarizing the main result of the paper, and we also recall some properties of defined
objects which are subsequently used. Let us single out the Delone property of a point set,
and the operations of- and r'-inflations, wherer = (1 + +/5) andz’ = (1 — +/5) are
the solutions of the algebraic equatioh = x + 1.

In Q[z] = {s + 11 | s, € Q}, the extension of the rational numbers bythere is an
automorphism: Q[t] — Q[z] given by t — t’. The ringZ[t] of integers ofQ[z] is the
set

Zltl ={a+ bt |a,beZ)}.

Let us recall the following aboUZ[z].

e It is dense in the set of all real numbeRs

e It is a ring of principal ideals, i.e. all ideals if[t] are of the forméZ[z] for some
& € Z[r]. All sets of this form foré # 0 are dense iR.

e In particular,Z[t] is a unique factorization domain, hence the greatest common divisor
is well defined up to multiplication by a divisor of 1. &f = gcd{ F'} is the greatest common
divisor of a setF' C Z[t], thend’ is the greatest common divisor of the g&tof conjugated
points to points ofF.
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e The group of units ofZ[r] consists of(+7* | k € Z}. (An elementy € Z[z] is a unit
iff yy' ==1.) In aringR of principal ideals the following statement holds. kgQw € R,
gcd(u, v} = 1, the equationx + vy = 1 has a solution irR.

An n-dimensionalZ[t]-lattice M C R”" is a freeZ[r]-module of the rankn, M =
> i Z[t]e;, with «; a basis ofR”. We consider thé&[r]-lattices for which the standard scalar
product takes values if9[z]. Let us recall some facts following from general properties
of modules. Two bases of A[r]-module M are related by a matrid of determinant
detA = +7* for somek € Z. A setL C M is a submodule oM, if it is a Z[r]-module
on itself. If L is a submodule of a modul#, spanning the sam®”, then there exist bases
fi,..., fn @ndey, ..., e, of L and M respectively, such thaf; = ag;e;, whereq; € Z[1],
i=1,...,n. LetS c R". We denote the set

[S]" = {ul + ) & —uy)

m

S,‘GZ['L’],MI‘GS}. (1)
i=1
Clearly, this definition does not depend on the choicetpfn S. In the case that @ S,
the set F]* coincides with theZ[r]-module generated by elements £f

Let x be a mapping« : M — R". It is called the ‘star map’ if it is semilinear
with respect to the automorphismi.e. for anyx,y € M, and anyr € Z[r], one has
(x +ry)* = x*+r'y*, and M* spansR” over real numbers. On arigr]-lattice M, one
can define a star map by putting = «; for all basis vectors.

Note thatM* is also aZ[r]-lattice. If «; is the basis ofi, thana is the basis of\/*.
Having anS C M, then

(ST =1[5"T".
In general, M* # M, but it may happen tha¥ and M* coincide even ifo* # «;.

The point sets considered in this article are required to be Delone sets or, equivalently,
to have the Delone property.

Definition 2.1.A set A C R" is Deloneif there existry, r» > 0 such that:
(i) A is uniformly discrete (Vx € A)(B(x,r1) N A = {x}),
(ii) A isrelatively dense (Vx € R")(B(x,r2) N A # @),
where B(x, r) C R" is then-dimensional ball of the radius, centred atx € R".

Definition 2.2.Let M be aZ[r]-lattice in R” and 2 C R". Let () be the set of points
T(Q) ={x € M|x* € Q}. (2)

For @ bounded with nonempty interior the sE{(2) is called a quasicrystal<2 is called
an acceptance window faE (R2).

According to [9], the boundedness ©f, together with the fact that the interig?° is
nonempty, assure the Delone property3f2). For Q bounded, (2) is the usual way to
define a quasicrystal [10, 4] of cut and project type. Note that the stage for the quasicrystal
is the Z[t]-lattice M. Its star map image is the s@&nN M*. In the one-dimensional case
one considers/ = Z[t], and the star map reduces t6 = x’, for x € Z[z]. In this case
(x) = x and (Z[t]) = Z[r]. An example of a one-dimensional quasicrystal is found
in (6).

Next recall the operationr on R”, called eithemquasiadditionor z-inflation [2], and let
us simultaneously introduce the analogous operatieinflation denotedH,

xFy:=1%x —1y 3)

S+ (4)
T

5+

x4y =@)x—1y=

Q
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Figure 1. Geometrical meaning of definitions (3) and (4)wfand t’-inflations.

Note that thetr’-inflation is a convex linear combination af and y. Indeed, one has
0 < 7! < 1 and for any power of, the relationr/*? = ¢r/+1 4 ¢/ is valid.

Relation (3) is not a unique way to define the quasiaddition. There is an infinite series
of similar operation one introduces in its place. For fixedn anyy, we have from (3)

xkEy=x—1(y—x). (5)

The geometric content of (5) is visible in figure 1. It is an inflation of the distapce x|

at the pointx by the factor—t. One could consider other scaling factors provided they are
in Z[z] and the operation analogous to (4) is also convex. All such scaling factors form a
one-dimensional quasicrystal

2(0,1) ={x eZ[r] |0<x" < 1} (6)

In [5] it was shown thatx(2) with convex2 are s-inflation invariant fors € X ([0, 1]).
Therefore this study could be carried out usingsamflation with s € ¥ ([0, 1]) instead
of only s = —t. Subsequently we only consider tkiet)-inflation, calling it traditionally
‘r-inflation’. Note that—z is the lowest element of ([0, 1]) in absolute value, providing
a nontrivial scaling. It appears unlikely that for genera¢ X ([0, 1]), one could obtain
similar results as those presented in this paper.

Let us introduce the- and z’-inflation closuresA™ and A7, for a setA c R”, as the
minimal sets invariant under- and z’-inflations respectively, containing.

Subsequently, when working with elements Mf it is often advantageous to transfer
the consideration to th&f*-side in order to be confined to a finite region. The one-to-one
correspondence between the two can be written as

w e {u, v} = w* e {u*, v}’ Yu,ve M. (7)

Let us point out some properties efinflation [2], which are used below. Similar
properties involvingr’ are obtained replacing by . For anyx, y € R":

(i) x Fx =x,

(i) xEy=yE@GFx,

(i) for any affine mappingy : R* — R”, one hasp(x - y) = ¢(x) F ¢(y). In
particular, for anyu € R", (x +u) - (y +u) = (x = y) + u.

Later, while studying one-dimensional sets, we find useful the following lemma. It
implies that for any se§ C Z[z] of generators, the inflation closus& (or S respectively)
is contained in the ideal g¢8}Z[z]. In such a case, if gdd} # 1, ther’-inflation does not
generate all points df[z] contained in some acceptance window, therefgrés not a cut
and project set. The identification with a one-dimensional quasicrystal requires an affine
mapping¢, such that gciy (S)} = 1.

Lemma 2.3Foru, v € Z[t] and anyx € {u, v}", we have gcfk, u} = gcd{u, v}.

Proof. Clearly, it suffices to show that for amy v € Z[z], gcd{u, v} = gcd{u F v, u}. Since

the factorization of a number € Z[] into primes inZ[t] is unique up to some divisor of

1, the greatest common divisor does not change, if we multiply the argument by any divisor
of unity 7%, with k € Z, gedu, v} = ged{thu, v}. Clearly, gedx, y} = gedix — y, y).



Self-similar Delone sets and quasicrystals 4931

Therefore gcge F v, u} = ged{t?u — tv, u} = ged{t?u — tv, tu} = ged{rv, t2u} =
gcd{v, u}. The statement of the lemma follows easily. O

The aim of this paper is to identify any-inflation invariant Delone seA in R”, with
a cut and project quasicrystal. The problem has several aspects.

First, the stage for a cut and project quasicrystal & €-lattice M, which is equipped
with a star map= . Therefore our first task is to embedinto an M. However, as we have
seen from lemma 2.3 for the one-dimensional case, not all affine mappjnte\) C M,
are suitable. In general, we require tha(f\)]* = M

Having found an embedding of A into a suitableZ[r]-lattice, one can check the star
map image ofp(A), in correspondence with the cut and project definition. The desired
acceptance window is found as convex hdf(A)).

The steps recalled above are rather natural, however, they need to be justified. First
of all, is it possible to find a suitable embedding &finto a Z[t]-lattice? The answer is
yes, for A, which is t-inflation invariant and Delone. When considering the acceptance
window, do all the points of th&[c]-lattice contained in¢*(A)), correspond to points of
A, or are there some additional ones? It turns out that this is true for the interior of the
window only. The question of the boundary should be dealt with in more detail.

The main result of this paper is formulated as the following theorem.

Theorem 2.4Let A C R*, n > 1, be a Delone set closed undeinflation. There exists
an affine mapping: R* — R”, aZ[r]-lattice M = )", Z[t]«; equipped with a star map,
and a bounded s& C R, with the convex interiog2°, such that

P (A) = X ().

The convexity of the interio2° of the acceptance window describe partially. A
necessary and sufficient condition énto have () t-inflation invariant, is formulated
using the notion of quasiconvexity (cf definition 5.4).

The subsequent parts of this paper contain the proof, comments and examples. Some
of the auxiliary statements are of interest on their own. Particularly instructive is the one-
dimensional case.

3. One-dimensional sets

In this section we demonstrate in full the one-dimensional special case of the main
theorem as theorem 3.1. Most of the auxiliary steps are indispensable during the proof
of the multidimensional case. Some properties of higher-dimensional quasicrystals, such as
inflation symmetries [5], minimal distances [6], etc are in fact one-dimensional problems.

The quasiconvexity of2, in theorem 3.1, is replaced by the simple assertion $ha
convex, due to the fact that its boundary is of dimension 0.

Theorem 3.1Let A C R be a Delone set closed undeiinflation. There exists an affine
mapping¢ : R — R and a nondegenerated bounded intefeat R such that

¢ (A) = X ().

The first step is to map. C R into Z[z]. In fact not all mappings int@[z] are suitable
for subsequent identification af with the quasicrystal.

For a setA C Z[r], containing 0 and closed underinflation, lemma 2.3 implies that
A is contained in gcfA}Z[z], which is an ideal in the ring[t]. Consequently, for any
such setA there exists an affine mapping (multiplication by (gcd{A}~1), which makes
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the inclusiony (A) C §Z[t] to imply that& is a divisor of unity, i.e£Z[r] = Z[t]. After
such an embedding inté[t], A is a cut and project quasicrystal with a convex acceptance
window, as shown in the following lemmas.

Lemma 3.2Let A C R be a Delone set closed undeinflation. Then there exist an affine
mapping$: R — R such thaty (A) € Z[t] and 0, 1€ ¢ (A).

Proof. Take anyb € A. SinceA is Delone, the greatest € A smaller thanb, and the
smallestc € A greater tharb, are well determined. Thus we consider poiatsc b < ¢
adjacent inA. In the first step we show that for aye A the ratio of length of the line
segments bounded hy, » andc can only take certain values. Namely,
b—a
c—>b
Since thet-inflation invariance is preserved under an affine mapping, without loss of
generality we assume that= —1,b = 0 andc > 1. If c = 1 orc = 7, then (8) is fulfilled.
Suppose that # ¢ > 1. Clearly, O< ¢ < t. Indeed, ifc > 7, then OF (-1) =1 < ¢,
which is the contradiction with the assumption that 0 arate adjacent.
Since bothe andt belong toA, alsou = ¢ - t = t?c — 1% = t?(c—1) € A. However,
0 < u < ¢, which is again the contradiction with the fact that O andre adjacent im.
For arbitrary point and its left neighbous < b we now putp (a) = 0, ¢(b) = 1. The
affine mapping is now well determined. Singé&z), ¢ (b) € Z[r] and all distances between
adjacent points of\ in this scale are of the form*, k € Z, we havep(A) C Z[z]. O

1
=17,1 or-. 8)
T

Since 0, 1le ¢(A) C Z[r], we have gcéip(A)} = 1. In order to identifyp (A) with a
cut and project quasicrystal, we find its acceptance interval as the convex hull of the star
map imagep*(A) = ¢'(A) of p(A). Then we have to show that the only points fréijr]
in the convex hull are the elements ¢f(A).

Let us introduce the-expansion, an important tool used several times later (lemma 3.3,
proof of theorem 3.1). Ar-expansion11] of a real number > 0 is an infinite sequence
(x))k>i>00 Of coefficients taking only two values 0 and 1, so that one has the equality

k
x = inti xi=0o0rl 9)

i=—00

The identityt/ + t/*1 = ¢/+2 j ¢ 7Z, implies thatx;x;_1 = 0, k > i € Z. For negative
real numbers we put; = —|x|;, negatives ofr-expansion coefficients fgi|.

If an expansion ends with infinitely many zeros, it is said tdfibée, and the zeros at
the end are omited. The set Fin of all numbers with finiter-expansion coincides with
the ringZ[t]. In particular, ther-expansion of any € Z[t] N (0, 1) contains only negative
powers ofz,

k k 1
X = Zo{,’rﬂ = Zaif a; € {0, 1}; 011 = 0.
i—1 i T

The following lemma is proven in [2]. Its demonstration below follows a different path,
and it is a crucial result for our purposes.

Lemma 3.3.
Z[t]N[0,1] = {0, 1)
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Proof. The inclusion 5’ is obvious; a combination of 0 and 1 with the coefficientgr)?
and Yt is convex, therefore must lie between 0 and 1. As for the opposite inclusion *
clearly both 0 and 1 are included {0, 1}7. Indeed,x 4 x = x. Forx e (0, 1) we use its
r-expansion. We will proceed recursively on the maximal powei} @h the t-expansion
of the numberx, denoted byk:

1) k=1
1 0 1
x=-=—+-¢€{01"
T T T
2) k=2:
1 0 3
xzﬁ—ﬁ—{—;e{o,l}
)k =3
(051 (0% (0773
X—?+ﬁ+" “r;
(a) either:
. _0 1/ar ol 4
011—0:>)C—§+;(?++m)6{0,1}
(b) or:

a3 (0773 1 4
<?+"'+ﬁ)+;€{0,1} .

O

The following remark, as a consequence of the lemma above, will be used in section 5.

Remark 3.4A set A C R, containing at least two elements and closed undeflation,
which is not Delone, is dense [R.

The content of lemma 3.3 is readily extended to any intervab] with u, v € Z[],
such that —u = t* for some integek. Using only properties of quasiaddition and the fact
that t* is a divisor of unity in the ringZ[z], i.e. T *Z[z] = Z[r], we obtain the following
result.

Corollary 3.5. Let u, v € Z[t], such thatv — u = t*, for somek € Z. Then
{u, v}" = [u,v] N Z[].

Unlike the previous case, if the differenee- u is not a unit inZ[z], not all the points
of Z[t] in the interval |+, v] can be generated by/-inflation. However, using the operation
- we obtain all points in the interval of a certain ideal4fir]. Let us see an example. Let
A = {0, 3)7. Suppose there exists a convex set (intervaly R, such thatA = P N Z[1].
SinceA = {0, 3}, we have 0, 3= A. Therefore the intervaP contains the interval [(B].
However, this means that for example=1Z[z] N [0, 3] should belong taA. Clearly, due
to lemma 2.3, we have £ gcd{1, 3} £ gcd0, 3} = 3. Therefore 1¢ A. In general, the
description oft’-inflation closure of a finite subset @t] can be written as follows.

Lemma 3.6Letag <ay <arx <--- <ay,a; € Z[t]fori =0,...,n. Then

{ao, a1, ..., a,}" = [ao, a,) N (gcdar — ag, . . ., @, — ao}Z[t] + ao).
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Note that a set\ C R, containing at least two elements and closed undanflation,
is dense in(A), the convex hull ofA.

Occasionally a quasicrystal can be constructed asirdlation closure of finite set of
seed points. Far from every set of seed points leads to a Delone set. The following assertion
can guide the choice of seeds.

Corollary 3.7. Let S be a finite subset dR containing 0 and at least two additional points.
Then S" is Delone if and only if there exists an € S, such that all elements of are
Q[r]-multiples of x. In particular, leta, b, c € R. The set{a, b, ¢} is Delone if and only
if
c—b
b—a

Otherwise{a, b, c}" is dense inR.

€ Q[r]. (10)

Proof. We prove the statement forwith three elements, the general assertion then follows
easily. Leta, b, ¢ € R. The implication &) can be seen from lemma 3.2. For the
exists anx € S, such that all elements of are Q[r]-multiples other implication, suppose
we have pointsz < b < ¢ € R satisfying (10). Since the action of a linear mapping
does not change the Delone property, we can consider a scale such th&, b = 1.
Then necessarily 1< ¢ € Q[r], i.e. there existsp, ¢ € Z[r], gcd{p,q} = 1 such
thatc = 5 By another rescaling we encounter the problem whether théOset p}~

is Delone or not. We use lemma 3.6 for the set of poifits= {0, ¢’, p’}. Since
gedg’, p'} = 1, we have{0, ¢/, p’}" = [min{0, ¢/, p'}, max0, ¢’, p’}] N Z[t], which is
equivalent to{0, ¢, p}~ = = ([min{0, ¢’, p'}, max{0, ¢’, p'}]), i.e. it is a cut and project
quasicrystal with bounded acceptance domain. It is shown in [9] that such a set is Delone.

A multidimensional analogue of (10) is in corollary 5.2.
The following lemma shows that the Delone property3xfQ2) is lost wheng2 is not
bounded.

Lemma 3.8Let () = {x € Z[z] | x' € Q} be a Delone set for an interv&l c R. Then
Q is non degenerated and bounded.

Proof. If @ is degenerated, i.&(Q2) is either empty or contains only one element, then it

is not relatively dense and hence not Delone (cf definition 2.1). An unbounded connected
Q implies that there exists am € R such that eitheta, +00), or (—oo, «) is subset of2.

Let (a, +00) C , the other case would be treated analogically. Without loss of generality,
a > 0. We want to obtain a contradiction with uniform discretenesE @2). To prove its
negation,

Ve > 0)@x,y e Z(Q)(ly — x| < &) (11)

we takek € Z such thatr®*? > ¥ > maxa, 1}. Sincet**? > ¥ > «, we have
2 1k e @, hence(r¥+2?), (%) € (Q). Puttingx = (t¥)’ andy = (t**?)’, we find (11)
as

1 1 1

k+2y/ _ vy - — & & = _
[(z°) — (@) = 2 = e < e €

T
ThereforeX (2) is not uniformly discrete, hence not Delone. O

1
k
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Now we are in the position to prove the one-dimensional version (theorem 3.1) of the
main theorem.

Proof of theorem 3.1Using lemma 3.2, we have a linear mappihng R — R such that 0,
1€ ¢(A) C Z[t]. This means that gdéb(A)} = 1. Denote by the convex hull of the
star map image o (A), 2 := (¢p*(A)). First we prove thafR2 N Z[t] = ¢p*(A).

The inclusionD is obvious. Let us look at the opposite one: For anyx € QN Z[z]
we want to show that € ¢*(A). Using corollary 3.5, we conclude that it suffices to find
an interval f, d] c @ of unit length, bounded by points frog(A). Clearly, [Q 1] C €.
Using lemma 3.3, we havg0, 11N Z[t]) C ¢*(A).

Suppose thaf2 is bounded by some-co < u,v < +00. The caser =0, v = 1 has
already been established. Suppose that 1. Letx € QN Z[z], x > 1. Since¢*(A)
is dense in®, there exists an element € ¢*(A), such thatx < w < v. Sincew is an
element ofZ[t], the numberw — 1 # 0 has the finitec-expansion,

-2
w—1=7"+ E w;Th.

i=—j

Clearly, w — 7/ < 1+ t!. Since¢*(A) is dense inQ2, we can choose @ € ¢*(A)
such that mafw — v/, 7'} < d < 1+ /. Then necessarily := d — ! belongs to
[0,1] N Z[z], hence also top*(A). The length of the intervalc[d] is t!, therefore
¢*(A) D {c,d}" = [c,d] N Z[r]. Now it suffices to take the intervakf — 1/, w], where
w—1! € [e, d], to obtainx € ([0, w]NZ[t]) C ¢*(A). Similarly we proceed for an element
x € QNZ[t], u <x < 0. Finally, p*(A) D Q NZ[z]. Thus we have

P (A) = X ().

To prove the statement of theorem 3.1, it suffices to notice that, due to lemm® 3s8,
bounded. O

4. Generators of inflation invariant sets

In this section we have collected several lemmas which subsequently facilitate the proof
of the main theorem 2.4. We describe theinflation closureS™ of a setS of generators
(‘seed points’). Lemma 4.1 and corollary 4.2 describe the case of the set generated from
two seed points{x, y}™. In lemma 4.4 the set of generators is taken to be a basis of a
Z[t]-module. The result for an arbitrary set of generators is given in lemma 4.6.

Lemma4.lletx, y € M C R" be two points in &[r]-module. Then
{r.yy = {x+s(y—x) | s € Z[t] N[0, 1]}.

Corollary 4.2 singles out the case whefkinflation of two elements, y € M generates
all points of theZ[t]-module on the line segmerit, y).

Corollary 4.2. Let x, y be two points in aZ[t]-module M C R”", with the basisq;,
x =Y xa andy = Y y;a;, which, at least for on¢ € {1, ..., n}, satisfyy; — x; = 7.
Then

.y} ' ={x+s(y—x)|se[0, 1]} N M.
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Our ultimate aim is to describe the cut and project scheme of a Deloird|ation
invariant setA c R”". The first task is to embed into a suitableZ[r]-module M. Only
then can we ask about its acceptance window. A hint for finding the window is a direct
consequence of lemma 4.1.

Let A € M C R" be a Delone set, closed undeinflation. Then there exists a convex
setQ C R”,

Q= (A% (12)

such thatA* is dense inQ2. Here (A*) denotes the convex hull ak*. Moreover,A* is
dense on any line segment bounded by pointa bf

In the case thatA*) N M* = A*, the setA is a quasicrystak (2), with the convex
acceptance window given by (12). The following lemma helps us to decide the validity
of (A*) N M* = A*,

Lemma 4.3Let A C M be a Delone set, closed undeinflation, and<2 given by (12). If
there exists a non-empty open $eic €2, such that? N M* C A*. Then

QN M* C A*

whereQ° is the interior of the sef2.

Proof. We have to show that anye Q° N M* is contained inA*.

First observe that for any point e A* and anyy € Q@ N M*, all pointsz of the Z[z]-
module M*, on the line segment bounded byandy, belong toA*. Using corollary 4.2,
we can view the situation in one of the coordinates and thus face a one-dimensional problem
solved in the proof of theorem 3.1.

Now, letz € Q° N M*. Choose arbitrary € @ N M* andc € °, such that; lies on
the line segment betweénandc (see figure 2)). SinceA* is dense ire, it is possible to
find a pointx € A* sufficiently closed te, such that the straight line throughx intersects
Q nontrivially. Since is open, one can choose a point M* in this intersection. Then
z lies on the line segment betweenand x (see figure 2f)). Using the observation, we
find z € A*. O

In lemma 4.4 we show that &i[r]-module points inside a certain polytop are generated
by ’-inflation starting from its vertices.

Lemma 4.4Let M C R" be aZ[r]-module with a basis;, i = 1,...,n. Then

{O,al,...,an}%=Mﬂ(0,a1,...,an).

Figure 2. A symbolic representation of two subsequent steps of the proof of lemma 4.3.
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Proof. We show that all points of the modulé of the polytope with vertices,@a, ..., «,
(convex combinations of the vertices), can be generated {yflation, using the vertices
as generators. We proceed recursively on the number of nonzero coefficients in the convex
combination.

Using lemma 4.1 and corollary 4.2, we obtain

{0,0:)" = (Z[t] N[0, 1oy = M N (0, ;) (13)

where we denote usin{®, ;) the convex hull of vertices Qy;, i .e. the line segment with
boundary points Og;. Similarly,

{ai, 0} = (Z[]1 N[0, 1) (e — ;) + i = M N (o, ;). (14)

Now, let the pointz € M be the convex combination @f+ 1 vertices of the polytope,
for some 2< k + 1 < n + 1. Without loss of generality suppose that

k k
z:zO.O—i—Zz;a[ zi € Z[t],zi > 0 i=0,...,k Zz[<1.
i=1 i=1

First, let us consider a pointwith the property

1 k
4 — and i< —. 15
< Zz < (15)

Then

k k
1 1
7 =zi00+ E Zi; = ;(tzwcl) + ;( E fzzz'ai>
i=2 i=2

i=

which is, due to induction hypothesis, w#inflation combination of two pointszia; €
{0,a1)" and Y, t%zia; € {0, a1, . .., o} of the polytope. Thus € {0, a1, @z, ..., )™

It now suffices to realize that the region of pointssatisfying (15), defines an open
(with respect toRf) setQ c (0,a1,...,a,) =: Q. Due to lemma 4.3, applied to the
Z[t)Hattice M® := Y%, Z[t]a;, we have

0,1, ...,ap)°N M = (0, oz, ...,ak)oﬂM(k) C {O,al,ag,...,ak}%,

where all interiors are meant with respectRé.
Boundary points of(0, o, ...,o)° N M are in {0, a1, ay, ..., a)", according to
induction hypothesis. O

For the following corollary realize that iV is a Z[r]-lattice with basise;, then
corresponding star map imagé* is also aZ[r]-lattice. Its basis isy}".

Corollary 4.5.Let M C R” be aZ[r]-module with a basig;, i =1, ..., n, equipped with a
star map. The sdD, a1, ..., a,}" is a cut and project quasicrystal with acceptance window
0,07, ..., a5).

The following lemma is used in the proof of lemma 5.1 and implies the proposition 5.4.
Lemma 4.6Let S C M. Then

[SIFN(S)° c S
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Proof. Without loss of generality assume that(. In this case

[S]" = { Zfiui
i=1

coincides with theZ[t]-submodule ofM generated bys.
Suppose initially thats is finite. We proceed recursively on the number of elements in
S. Letu e M, [0, u]” := {tu | t € Z[z]}. Then using corollary 4.2,
[0, u]" N (0, u) :={ru | t € Z[t] N[0, 1]} = {0, u}™.

Suppose now, that for any C M, with less thark + 1 elements, the statement holds.
Take S = {0, uq, ..., u;}, whereu; € M. We show that

é;',‘ S Z[t],u,- [S S}

[0, u1, ..., u ] N (0, ua, ..., u)° C {0, us, ..., ux}".
Consideru € [0, ug, ..., ux]* N {0, uq, ..., ur)°. We can write

k k
u=y pui  PeRF>0 Y pi<l
i=1 i1

Assume that
Bi € Z[7] Vie{l,..., k} (16)

For linearly dependent;’s, the assumption is not obvious. It is justified in the final part
of this proof. Given assumption (16) and using the same procedure as in the proof of
lemma 4.4, we consider first the points= ) B;u; satisfying

1 & 1
/31<; and ;ﬂ,<?

Thenu is at'-inflation combination of points which are, due to induction hypothesis, already
in {0, u1,...,u;)”. These points form an open s@tfor lemma 4.3, which gives us the
result.

It now suffices to show the statement also for infinite setet x € [S]* N(S)°. There
exists a finite se? C S, such thatx € [P]* N (P)°, which we have shown to be a subset
of {P} c {S}".

Let us now justify assumption (16). Sineee [0, ug, ..., ur]” N (0, ug, ..., ug)°, we
can findéy, ..., & € Z[t], such that
u = Xk:&-ui (17)
i=1
andy, ..., ¥ € R, such that
u= iy,-ui with y; > 0 iyi <1 (18)
i=1 i=1
In the case of linearly independemt, .. ., u;, the coefficients; andy; must coincide and

we can puts; :=46; = y;.

Otherwise there are martytuples(d, ..., &) and(y, ..., y) satisfying (17) and (18),
respectively. Without loss of generality, we assume that. ., u; are linearly independent
forl < k, andl is the rank of{uy, ..., u;}. Sinceu;,4, ..., u; are dependent o, ..., u;,
there exists coefficients, ando], forr =1+1,...,k, andi =1,...,/, such that

]
arur:Z(xlf‘ui r=I01+1 ... k. (29)
i=1
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Clearly, the coefficients,. and«] can be chosen fror[z].
We can add a zero to equation (17), given by sum of relations (19),

k i
0= E |: ofu; — oz,u,1|
1

r=Il+1Lt i=

multiplied by any factorH, € Z[z],

! k k
u= Z (8,- + Z H,a[)ui + Z (8 — Hiotj)u;. (20)

i=1 r=I+1 i=l+1

Subtracting (18) from (20), one has

l k k
u—u =0:Z<5i -vi+ Z Hra{>ui+ Z(Si —vi — Hiap)u;. (21)
i=1

r=I+1 i=l+1

Using the free parametét; € Z[t], i =1+1, ..., k, and the fact thaZ[r] is dense inR, it
is possible, for any > 0, to find H; € Z[r] such that the coefficients af, i =141, ...k,
in (21) are close to zero,

16 — Hioy — yi| <e.
From (21), one obtains
k ! k
7= Z (vi — & + Hiap)u; = Z <5i v+ Z Hra,‘r)ui
i=l+1 i=1 r=I+1

where||z|]| < ekmaX{|lu;|| | i = 1,...,k}. Since the coordinate functional is continuous,
for givenw > 0, one findss > 0 small enough, such that

k
Si+ Y Hol —yi| <o i=1,...,1 (22)
r=I+1
|8i—HiOl,'—)/i|<8 l=l+1,,k (23)
Now put
k
S+ Y Heaf € 7[7] i=1,...,1
Bi = r=I4+1
8,'—H,‘Ol[ EZ[T] l:l+1,,k

One can choose ande in (22) and (23) small enough, such tigathave the same properties
asy; in (18), i.e. satisfy (16). O

A consequence of the above lemma is formulated as corollary 4.7. It is a very important
step for the proof of the main theorem, namely for identification of the acceptance window
of the inflation closure of an arbitrary s8tC M of generators.

Corollary 4.7. Let S be a subset of &[]-lattice M, equipped with a star map, such that
[S]* = M. Then

T((S$*°) C " C ZUSH).
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The above corollary identifies the inflation closure of an arbitrary set of generators
with a cut and project set. If the assumptias]’ [ = M is not valid, we consider as the
correspondind[t]-lattice the set§]* — aoq, for someaq € S, where the star map is induced
from M.

There are two important facts to notice. First, corollary 4.7 does not deal with the
Delone property of the inflation closurg€ . Therefore no statement about boundedness
of the acceptance window can be made. Therefore in general, the resulting set may not
be a quasicrystal. Secondly, we determine only the interior of the acceptance window.
In order to provide complete information about its boundary, we introduce the notion of
guasiconvexity (definition 5.4). The following section gives the answers for both of the
problems.

5. Proof of the main theorem

Herein the proof of theorem 2.4 is completed. However, before that several essential steps
have to be taken, some of them being of wider interest. Let us point some of them out.
Similarly as in the one-dimensional case, an arbitrasipflation invariant Delone set in
R" needs to be mapped into Zt]-lattice, in order to be identified with a quasicrystal
(lemma 5.1). A particularly useful for generating quasicrystals is a consequence of the
lemma, which is formulated as corollary 5.2 (compare with corollary 3.7). Lemma 5.3
states that the boundedness{ofs not only a sufficient, but also a necessary condition for
a cut and project quasicrystal closed undenflation, to be Delone. The quasiconvexity
defined at the end of the section, allows us to formulate the general necessary and sufficient
condition for X (£2) to be closed under quasiaddition (proposition 5.5).

The mapping of an arbitrary Delone-inflation invariant set into &[r]-lattice is
accomplished according to lemma 5.1.

Lemma 5.1Let A C R” be a Delone set closed undefinflation. There exists a basis
o; € R", such thatA can be embedded using an affine mapp@R” — R” in the
Z[t)-lattice M =Y _"_| Z[t]a;, ¢(A) C M, and O,e; € ¢(A).

Note that the basis a¥f belongs tap (A), which implies thatp (A) C M is not contained
in any proper submodule a¥.

Proof of lemma 5.1 Initially we find an affine embedding: R” — R" of A into aZ[t]-
moduleL. Let g; fori =1, ...,n be a basis oR", such that(g; | 8;) € Z[z] for all i, j.
Denote byL the Z[r]-module generated by the bagis L := >_" , Z[7]B;. Without loss
of generality suppose that® A. SinceA is relatively dense, it spari®” and hence there
existsn + 1 elements G= xg, x1, ..., x, € A, such thaty, ..., x,, are linearly independent.
Let us distinguish the following possibilities.

(1) All coordinates of any poiny € A, relative to the basis;, belong toZ[z]. Then
pute(x;))=p8 fori=1,...,n.

(2) For anyj = 1,...,n, the set ofjth coordinates of all points of\, relative to
the basisx;, are elements Ofpl—/_Z[f], for some p; € Z[z]. Then put¢(x;) = p;8; for
i=1...,n.

(3) If (1) and (2) are not fulfilled, say for first coordinate, we show the contradiction
with the assumption that is Delone. First, we find a sequence of points

(m) m—>0o0

n
D uxi =u" e A such that{"™ "~ 0. (24)
i=1
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Without loss of generalityy\" are mutually distinct. There are two possibilities.

(a) There exists a point € A such that one of its coordinates, say the first one, in
the basisxy, ..., x, is not an element of)[t]. Now due to corollary 3.7, the set of first
coordinates ofxo, x1, y}" is dense everywhere R, thus 0 is its accumulation point. Since
A is closed under quasiaddition, there exists a sequence of points satisfying (24).

(b) There exists an infinite sequence 8’ € Z[r] and a sequence of poin{g™ € A
such that for the first coordinate in the basis ..., x,, there isy\"” & Z[7] and

ym ¢ 5 Z[] for k < m. The c-inflation closure(y\™ | m e N} is a set closed under

guasiaddition which cannot be embedded ii{a], therefore according to lemma 3.2, is
not Delone. Hence, due to remark 3.4, the point 0 is its accumulation point and we can
construct the sequenee™ of (24).

Put nowe (x;) = B, fori =2,...,n and g} = B;. Let us denote

n

Z(m) — Z M§I7l)ﬂi-

i=2

Since{0, B2, ..., B} is a cut and project quasicrystal (remark 4.5)RitT? with bounded
acceptance window, it is Delone &'~ [9], i.e. relatively dense. There exists> 0, such
that for anym e N there exists an element™ e {0, B, ..., 8,}" such that

ez —w™| <r.

Take the sequence of poini§™ F w'™. The points are mutually distinct, since their first
coordinates are?u{". One has

lu™ = w™ | = t)eu™ — w™| =t o + 2™ — w™| < T(|laa] +r)

where we have used thaugm)n < % for m € N sufficiently large. We have constructed an
infinite sequence of elements of in a bounded region, therefore cannot be uniformly
discrete, hence it is not Delone.

In (1) and (2) of this proof, we have constructed the affine mappiagd aZ[t]-module
L such that¢ (A) c L. Take M to be theZ[r]-submodule ofZ. generated by)(A). M
has a basis, say;, i = 1,...,n. The star map; is well determined by the semilinearity
from g = ;. The vectorsy; form a basis of theZ[r] module M*. To show that a basis
of M is contained inp(A), it suffices to show that its star map belongspt@A). Without
loss of generality, suppose that0{¢*(A))°. Otherwise we take a pointf € (¢p*(A))°
and redefiney to ¢ given by ¢ (x) = ¢(x) — yo. Due to lemma 4.6 we obtain

M* N (" (A))° C " (). (25)
Clearly, since Oe (¢*(A))°, we can multiply the basia’ by a suitabler* small enough,
such that the resulting vectors would belondgd@(A))° and retain the property of a badis.
The following corollary generalizes corollary 3.7 to dimensions greater than one. It is

a consequence of the proof of lemma 5.1.

Corollary 5.2. Let S C R" be a finite set containing the origin. Theinflation closures™
is a Delone set if and only if there exists linearly independent veatgrs. ., u, € S, such
that for any pointx € S, one has

n
X = inui x; € Q[r].
i=1
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The following lemma is used in the proof of the main theorem. However, it is of an
independent interest. It restates the well known [9] implication that boundedn&ssnoh
cut and project scheme assures the Delone property of the resulting set, completing it into
a necessary and sufficient condition.

Lemma 5.3Let @ Cc R" be a convex region. TheR () is Delone if and only ifQ2 is
bounded and it is not embedable into amy— 1)-dimensional linear manifold.

Proof. We show only the implication not proven in [9], namely<¥ is convex andz (£2)
a Delone set, thef® is bounded and it cannot be embedded into a linear manifoRY inf
dimensionn — 1.

If @ is embeddable into a linear manifold of dimensior: n, so does the quasicrystal
set X (2). Therefore it is not relatively dense R* and hence not Delone.

Suppose now thaf2 is not embedable into a manifold of lower dimension and that
it is not bounded. To show thaf(2) is not uniformly discrete, it is convenient to
use [6,theorem 5.7]. It says that the upper bound for the minimal distance between
guasicrystal points fo& (£2), with convex centrally symmetric acceptance wind®y is
given by

42t —1) [T (n/2+ 1)|detw|| deto*|
JTo vol(Q)

whereTl is the gamma function. The larger is the volumeXfthe smaller are the distances.
Minimal distance in a subset &f($2) is the upper bound for the minimal distancesi),
therefore it suffices to find a sequence of subset® dfatisfying assumptions for (26) with
growing volume. Let us proceed in two steps.

First we show that any simpleX in R" of volume v contains a centrally symmetric
convex subset of volume®2™/2y. In T we first find a simplexS as the convex hull of a
vertex P of T, and the centres of edges ofl", which meet inP. Denote byC the centre
of the centrally symmetric convex subsgtof the (n — 1)-dimensional face of opposite
to P, which is found by induction. The desired centrally symmetric convex subs@t of
of volume 2-" . 2@=m0=1/2y, — 2(1-mn/2y s obtained as the smallest centrally symmetric
(with centreC) convex set containing the fagg and the pointP. The first step of induction
(two-dimensional case) is illustrated in figure 3.

Secondly we show that any convex unbounded set contains a simplex of volume larger
than arbitrarily chosen constant. Without loss of generality suppose tkat0 Since
Q spansR”, and contains zero, there exists linearly independent ., x, € Q2. The set

e(Q) < (26)

T

Figure 3. In any triangleT of volumewv, one finds a convex centrally symmetric subset (grey
coloured) of volume%v. The notation corresponds to the proof of lemma 5.3.
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(0, x1, ..., x,) Is a simplex. Letr > 0 be such that0, xi, ..., x,) is contained in the ball
B(0, r), centred at origin of radius.

For a directionk € R" of unit norm, we denote the linear manifolds orthogonal with
respect tok, by

Hiqa={x eR"| (x| k) =a}
and the maximal cross section parallelAg , by
sect, k) := supvol(2 N Hy,) | a € R}.
The minimal among them is
q = inf{sectQ,k) | k e R"} > 0.

Since is unbounded, for ang > 0 there exists a point € Q such thatl|x|| > o +r.

There is
sect, k) > g for k = ”x—”
X
Let a € R be the argument for which v@k N H; ,) = sect2, k). The volume of the
simplex T, determined by the fac N H; , and by the point, satisfies

1 1
vol(T) > —sectQ2, k) -a > —qa.
n n

For any positive constartthere exists centrally symmetric convex subRenf © such
thate(R2) < 8, thereforeX (2) is not uniformly discrete, hence also not Delone. O

Due to the previous preparations, the proof of theorem 2.4 is straightforward.

Proof of theorem 2.4.Due to lemma 5.1, there exists a linear mappingnd aZ[r]-
module M := > Z[t]w; such that Oo; € ¢(A) C M. We define the star map by
x = >l xe — x* =" xlo;. Since the origin and the vectors of the basis are
contained inp (A) ande} = «;, we can use lemma 4.4 to obtati(A) D {0, o, ..., )" =
M*N(0,as,...,a,). Thereis(0, ay, ..., a,) C (¢*(A)). According to lemma 4.3 we have
(@*(A))° N M* C ¢*(A). Now denoteR2 := (¢p*(A))° U ¢*(A). Clearly,p(A) = X (),

where Q° is convex. Since2 has a nonempty interior® > (0, aq, ..., a,)°), it is not
embedable into a linear manifold of lower dimension. Therefore one can use lemma 5.3 to
conclude that? is bounded. O

In the proof of theorem 2.4 we finf as the union of the convex pafd*(A))° with
a set of points imp*(A) found on the boundary ofp*(A)). In general, the boundary of
(¢*(A)) may contain points of* \ ¢*(A). Precisely these points prevent the equality in
the following:

T ((¢"(A)) # T(Q) = ¢(A).
The fact thatQ2° is convex, does not descril§& completely. Therefore one needs more

than theorem 2.4 alone, to formulate a necessary and sufficient conditidhfor to be
closed under quasiaddition. For that we introduce the notion of quasiconvexity.

Definition 5.4.Let M be aZ[t]-module inR". A setQ c R”" is quasiconveff for any
linear manifoldW c R” of dimension O< k < n, Q satisfies

QAW N[QNWNMI CQ

where 2N W N M*]* is defined by (1), and the interior 2N W)° is meant with respect
to the manifoldW.
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The complete correspondence between cut and project anftation invariant sets is
given in the proposition below, which follows from lemma 4.6.

Proposition 5.5.Let M be aZ[r]-module inR". The setx (L) is closed under quasiaddition
if and only if its acceptance windo® is quasiconvex.

Finally, let us consider an example of a quasicrystal with quasiconvex acceptance
window in the M, c R?, the Z[r]-span of the root system, of the noncrystallographic
Coxeter groupH,. A basisa;, i = 1, 2, of such a module is often modelled by the fifth
roots of unity in the complex plane,

ar=a;=1 ap = g'/® ay = M5, (27)

ConsiderQ ¢ R? to be the union of following three sets:
2 . 2
(x,y)eR°|x =rcosp,y=tSing, ¢ € O,? ,0<r <2

(x,y) e R? | x =2cosp, y = 2sing, ¢ € |:0, %:“

2 2
(x,y) eR? | x :tCOS?,y:tSIn?ﬂ,t e[o, Z)DZZ[r]}.

Clearly, this set has the convex interior (disc segment), however is not convex (the line
segment forming a part of boundary). Neverthel@s&) is closed undet-inflation.

6. Example: Inflation closures of three points as quasicrystals

Let us apply the result of this paper to an example of a finitely generated set. Consider the
inflation closureS™ of three points in the plane. Without loss of generality, one of them
can be taken to be the origiff,= {0, x1, xo}. The setS" is invariant under quasiaddition,
therefore according to the result of this paper it can be affinely mapped into a cut and
project quasicrystal. Whatever are the vectorsx,, the resultingS™ is unique, up to an
affine mapping.

Let us consider two 3-point sets in the complex plane for our example,

S1={O, 1,e%} -
Szz{o,l,e%}. (29)

According to the main theorem of this paper (theorem 2.4), the inflation closurgsarfd
S, can be identified with cut and project quasicrystals.
The example was chosen in such a way that one can find the affine mapping for
both setsS!, S, simultaneously. The stage for our quasicrystals will be Zife]-lattice
M, = Y, Z[t]a;, based on simple roots of the noncrystallographic Coxeter gfdups
the basisxi, ap. We determine the affine mappig: C — M, by setting

PO =0 ¢ =01 $E%)=0an

The most simple definition of a star map orZ§r]-lattice, is to pute; = «;. Since we
are using a well known modulgf,, we shall consider the standard star map [4], which is
determined by

] = o oy = —0q — T
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Figure 4. Fragments of quasicrystals (30). The parallelogram shapes of the fragments are
chosen in order to facilitate the identification of points on the two pictures according to the

mappingy (29).

i 4

Figure 5. Acceptance windows of the quasicrysteigs, Sg from figure 4. The triangles are the
convex hulls(S3), (S3), respectively.

(cf (27)). The latter maps the root system Hf onto itself, so thatv, is also one of the
roots.
The embedding of set$;, S, into M5 is given by

¢ (S1) = {0, a1, a3 + Tz}
¢ (S2) = {0, ag, az}.

The pairs of vector$as, a1 + T} and{as, ap} are related by the matrix

1 7
v=(5 %) 29)
with determinant def = —t’ = %, therefore both pairs are bases of the sdffe]-
module Ms.

Having embedded the se$§ into aZ[r]-lattice, which is equipped by a star map, we
can identify the sets with cut and project quasicrystals, which means that we can find the
corresponding acceptance windows. Since both¢sgls are formed by the origin and basis
vectors of theZ[r]-lattice M, we can use corollary 4.5, to conclude that the corresponding
acceptance windows are given by the convex hullg ¢5), ¢ (S3) respectively,

SE=X(S) i=12 (30)

The corresponding acceptance triangles are displayed on figure 5.
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